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Adaptive pathogen evolution

So far we have considered neutral evolutionary models where all pathogen
genotypes have the same fithness — mutations do not impact fithess.

Now we will consider fitness variation in pathogen populations where different
genotypes may have different fitness values.

In this case, selection can act on fitness differences between strains, allowing
pathogen populations to adapt to their environment.



What do we mean by fithess?

For our purposes, we can define a pathogen’s fitness in terms of its growth rate r:
r = birth rate - death rate
Within hosts, the birth rate can be thought of as the pathogen’s replication rate.

Between hosts, the birth rate can be thought of as a transmission rate and the
death rate as the rate infected hosts are removed. The growth rate r therefore
quantifies a pathogen’s epidemic potential at the host-population level.

Growth rates can also be related back to selection coefficients in classic population
genetics wheres=r_ -r

ut wt’



Selection shapes pathogen phylogenies

More fit lineages will have higher
growth rates and therefore branch
more often... leaving behind more
sampled descendents in a phylogeny.

branching = birth/transmission events




Selection shapes pathogen phylogenies

Selection for better adapted strains strongly shapes the phylogenetic history of
many different pathogens.
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Human influenza A virus HIV population phylogeny HIV within host phylogeny
population phylogeny

Grenfell et al. (Science, 2004)




Motivation: antimicrobial resistance

We will consider fitness differences between drug-sensitive and antimicrobial
resistant (AMR) strains of a pathogen.
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Motivation: antimicrobial resistance

We will consider fitness differences between drug-sensitive and antimicrobial

resistant (AMR) strains of a pathogen.
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We therefore need
phylodynamic models
that allow selection to
shape trees



Two types of phylodynamic models
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Birth-death models

Population dynamics are viewed forward in time starting at some point in the past.
In the most basic model individuals reproduce and die. Nothing else happens.

This is a stochastic process: the number and timing of birth and death events are
viewed as random variables.

Mathematically: a continuous-time Markov process on the space of positive
integers.



The birth-death process

A single stochastic realization of the birth-death process:
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The birth-death process

An ensemble of stochastic realizations
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The birth-death process

Let’s consider the probability p(t) that / individuals are alive at time t
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The birth-death process

We can analytically compute p (%)

The transition probabilities over a small interval of time At

A = birth rate Pisi—1(At) = piAt + o(At)
pi__)i+1(At) = MAt+ O(At)
1 = death rate Pinsi(At) = 1 — (A4 p)iAt + o(At)



The birth-death process
Given p(t), we can compute p (t+At):

pi(t + At) = A — D)pic1 (O) AL + p(3 + 1)pir1 (8) At — (A + p)ipi () At

i-1 ~

i+1 -




The birth-death process
Given p(t), we can compute p (t+At):

pi(t + At) = At — 1)pi—1(t) At + p(i + 1)pis1 () At — (A + p)ip; (1) At
Birth
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The birth-death process
Given p(t), we can compute p (t+At):

pi(t + At) = M@ — 1)pima (8) At + p(i + 1)piy1 (E) At — (M + p)ip; (t) At
Death

i-1 ~
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The birth-death process
Given p(t), we can compute p (t+At):

No event

i-1 ~

i+1 -




The birth-death process
Given p(t), we can compute p (t+At):

pi(t + At) = A — D)pic1 (O) AL + p(3 + 1)pir1 (8) At — (A + p)ipi () At

Letting At go to zero:

dpd;it) = A0 — 1)pi—1(t) + p(i + 1)pisa(t) — (X + p)ips(t)



Special cases

The probability that there are no living individuals after time t:

The probability that there is exactly one living individual at time t:

X s i 26_(>‘_/‘)t
p(t) = A0
(A — pel=2))




Why is this useful?



Birth-death processes as trees

The birth-death process can also be thought of as branching process that
generates a tree-like structure




BD tree likelihood: complete sampling
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) = birth rate

i = death rate
Thompson (1975); Rannala & Yang (1996)



BD tree likelihood

n—1

L(T|A 1) o< A" ] ] pa(t2)
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pi(t) =

) = birth rate

i = death rate

. complete sampling

Thompson (1975); Rannala & Yang (1996)



BD tree likelihood:

L(T|A p, p) o< (Ap)"~ 1Hp1

(A — p)%e” A0
((pXfA(L—p) —p)elf=A)E)2

pi(t) =

A = birth rate
it = death rate

p = sampling fraction

incomplete sampling

Stadler (2009)



BD tree likelihoods

We can compute the likelihood of a phylogeny having evolved as observed given
the parameters of our birth-death model, even in the presence of incomplete
sampling.

This means we can directly estimate birth (transmission) and death (removal) rates
as well as sampling proportions from phylogenies!



Parameters we can estimate from trees

The catch: we can only estimate two of the three parameters (A, L and p) in the

model, i.e. an increased birth rate can always be compensated by a decreased
sampling fraction and vice versa.

We can estimate both the birth and death rate if we know the sampling fraction.

For pathogens, we generally don’t know the sampling fraction but have prior
information about the removal rate U, so we can estimate the transmission rate A.

We can therefore estimate R, = (A / 1) and the sampling fraction.



Estimating R from pathogen phylogenies

The key epidemiological parameter R, the number of secondary infections caused
by an infected individual, can be estimated from pathogen phylogenies.

Prior distribution coalSEIR posterior || BDEI posterior

Stadler et al., (PLoS Currents, 2014); WHO
Ebola Response Team (NEJM, 2014)




Estimating R from pathogen phylogenies

The key epidemiological parameter R, the number of secondary infections caused
by an infected individual, can be estimated from pathogen phylogenies.

Prior distribution coalSEIR posterior || BDEI posterior

WHO Response Team Estimate:
RO =2.02 (95% CI: 1.79-2.26)

Stadler et al., (PLoS Currents, 2014); WHO
Ebola Response Team (NEJM, 2014)




What if there is more
than one type of
pathogen?



Multi-type birth-death models

Allows for different types of individuals (e.g. genotypes) that can vary in their birth
or death rates and therefore their fithess values.




Multi-type birth-death models
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Multi-type birth-death models
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Multi-type birth-death models

Sampling event




Multi-type birth-death models

/ Mutation event




Multi-type birth-death models
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Multi-type birth-death models

MTBD models allow us to compute the joint likelihood that both the tree and the
observed tip genotypes evolved exactly as observed (Stadler and Bonhoeffer,

2013).




Multi-type birth-death models
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Multi-type birth-death models

MTBD models allow us to compute the joint likelihood that both the tree and the
observed tip genotypes evolved exactly as observed (Stadler and Bonhoeffer,

2013).

This allows us to estimate the birth/death rates and therefore the fitness of each
type and the transition rates between types from a phylogeny.

Model is implemented in the BDMM package in BEAST 2 (Kihnert et al., MBE, 2016)



Motivation: antimicrobial resistance

We will consider fitness differences between drug-sensitive and antimicrobial

resistant (AMR) strains of a pathogen.
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Fitness of HIV drug resistance mutations
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ithess of HIV drug resistance mutations
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Resistance mutation

Table 1. Resistance mutations with numbers of corresponding clusters and samples, related drugs and drug usage dates within Switzerland.

nRTI NNRTL PL
Resistance mutation 41L 67N | 70R 184V | 210W | 215D | 2158 | 215Y | 219Q | 103N | 1081 | 138A | 181C | 190A | 90M
Number (#) of clusters of size > 2 56 23 19 35 18 18 16 25 20 25 10 46 8 8 14
#Sequences in clusters 927 667 712 1011 481 569 494 807 605 725 334 1014 329 311 389
# Resistant samples in clusters 93 39 26 4 26 41 31 28 28 38 11 109 10 12 38
Drug AZT | AZT | AZT 3TC AZT AZT | AZT | AZT | AZT | NVP | NVP | RPV | NVP | NVP | NFV
(SHCS drug codes) D4T | D4T | D4T | ABC D4T | D4T | D4T | D4T | D4T | EFV | EFV EFV | EFV | SQV
FTC ETV
RPV
Drug usage > 1% 1987 | 1987 | 1987 | 1995.5 1987 1987 | 1987 | 1987 1987 1997 | 1997 | 2013 | 1997 | 1997 | 1996

Kihnert et al. (PLoS Pathogens, 2018) Drug age < 1% et 111 1-T-1-1-T-7T-1:[x




Modeling adaptive molecular evolution

If we want to consider mutations at multiple sites, we need to track all possible
genotypes under the MTBD model.

The number of genotypes increases exponentially with the number of sites L (e.g.
4" for a nucleotide model).

It therefore becomes prohibitively computationally expensive to track molecular
evolution for more than a few evolving sites.



Marginal fitness birth-death models

The Multi-Type Birth-Death Model




Marginal fitness birth-death models
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Marginal fitness birth-death models

The Multi-Type Birth-Death Model The Marginal Fitness Birth-Death Model
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The important point: The MFBD model allows us to consider how selection shapes
sequence evolution at multiple sites while considering how mutations act together to shape
the overall fithess of a lineage.



Adaptation of Ebola virus to humans
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Adaptation of Ebola virus to humans
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The determinants of E. coli ST131 fithess
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The determinants of E. coli ST131 fithess
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The determinant E. coli ST131 fithess
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Multi-type birth-death models in BEAST

™

The marginal fitness birth death model model is i
implemented in BEAST2 as the LUMIERE package. T

On Wednesday, we will use the BDMM package to
estimate the transmission fitness of AMR mutations.



