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Coalescent models 
track the ancestry 
of sampled 
lineages backwards 
through time.

John Goddard, The Tree of Man’s Life (1649)



Basic coalescent theory

Coalescent theory describes the 
ancestral relationships (i.e. genealogy) 
of idealized individuals sampled from a 
larger population.

We envision these sampled lineages 
are embedded within the full ancestral 
history of the population.

Kuhner et al. (2008)



Wright-Fisher assumptions

Coalescent theory is largely based on 
simple demographic models like the 
Wright-Fisher model

Constant population size of N haploid 
individuals

Discrete, non-overlapping generations

Reproduction is a stochastic process 
such that individuals leave a random 
number of offspring. 

Kuhner et al. (2008)



Basic coalescent theory

Because reproduction is random, the ancestral relationships among individuals is 
also viewed as a stochastic process that generates random coalescent trees.

Rosenberg & Nordborg (2002)



Basic coalescent theory

The probability of two lineages 
coalescing per generation is:

Kuhner et al. (2008)



Basic coalescent theory

The probability of two lineages 
coalescing per generation is:

The probability of coalescing after n 
generations is:

Kuhner et al. (2008)



Basic coalescent theory

The probability of two lineages 
coalescing per generation is:

The probability of coalescing after n 
generations is:

In continuous time:

Kuhner et al. (2008)



Basic coalescent theory

The waiting time for a pair of lineages to coalesce is exponentially distributed.



A slightly more general coalescent model

The coalescent rate increases with the the amount of reproductive variance σ2 in 
the population:

We can define an effective population size Ne:

More generally then, the coalescent rate is:



Coalescent trees with mutations

A C G G

A G T T

A C T G

A C T G

Most coalescent models assume mutations are neutral such that mutations occur 
independently of the coalescent process. 

T > G

G > T



Coalescent trees and genetic diversity

A C G G

A G T T

A C T G

A C T G

Genetic diversity depends directly on both the mutation rate μ and the 
coalescent rate. The expected average pairwise diversity is: 

T > G

G > T

E(time) = Ne



Now with more than two lineages

With k lineages present, the coalescent rate becomes:

The binomial coefficient gives the total number of lineage pairs that could have 
coalesced:



The coalescent likelihood

For a tree with n samples and n-1 coalescent events we can compute the likelihood 
of the tree as:



Coalescent-based inference

We can therefore infer demographic parameters like Ne from a known phylogeny.



We can therefore use 
coalescent models to infer 
the demographic history of a 
population.



The signal of population size change



Modeling population size changes

Parametric models assume population sizes change according to some population 
dynamic model (e.g. exponential growth)

Nonparametric methods allow population sizes to change over time in an 
unconstrained manner. 

● Bayesian Skyline (Drummond et al., 2005)
● Bayesian Skygrid (Minin et al., 2008) 



Nonparametric approaches 

Generally assume population sizes change over time in a piecewise-constant 
manner.

Drummond et al. (MBE, 2005)



Bayesian skyline

Assumes that the population size can only change at a fixed number of change 
points.

Uses Bayesian MCMC to integrate (average) over all possible change point 
positions in addition to Ne within each interval/epoch.

Intervals can contain multiple coalescent events allowing for better estimates of Ne 

Produces a smoothed estimate of Ne through time with credible intervals.

Drummond et al. (MBE, 2005)



Bayesian skyline plots

Bayesian skyline estimates of  for Hepatitis C virus in Egypt

Drummond et al. (2005)



Bayesian skyline plots for the flu in NC



Limitations of simple coalescent models

Other forces beyond population dynamics influence coalescent rates and can 
strongly shape phylogenies:

● Reproductive variance - we infer Ne instead of absolute N

● Selection is difficult to model because reproduction is non-random

● Population/spatial structure



How do we account for 
population structure?



Dengue in southern Vietnam



Bayesian skyline estimates



Spatial structure



The problem with population structure

Standard coalescent models assume that all lineages in the tree are exchangeable.

Exchangeability here means that any lineage is equally likely to coalesce with any 
other lineage in the tree.

Many forms of population structure violate this key assumption.



Relaxes the exchangeability assumption by letting 
lineages move between different populations.

The pairwise rate of coalescent between two lineages 
i and j will depend on their population states k and l:

Lineages sampled in different populations therefore 
need to migrate back to the same population before 
they can coalesce. Beerli and Felsenstein (2001)

The structured coalescent



The structured coalescent

Each lineage pair is allowed to coalesce at a different rate λij based on the locations 
of lineages i and j.

However, we can still write down the likelihood of a tree given the rates λij

However, inference is much more difficult because we must now also infer the 
location of each lineage through time. 



The Migrate-n model

A structured coalescent model with migration between n subpopulations or demes

Models is parameterized in terms of a migration rate matrix M and a vector of 
effective population sizes θ:

Model allows for likelihood-based inference of M and θ. BUT we need to use 
MCMC to sample full migration histories along each lineage

Beerli and Felsenstein (2001)



Migrate-N and MultiTypeTree

MCMC implementations of the structured coalescent like MIGRATE and 
MultiTypeTree (Vaughan et al., 2014) sample migration histories on trees



Phylogeography with the SC

The structured coalescent (SC) has become an attractive alternative to discrete-trait 
analysis (DTA) for phylogeography

DTA treats sampling locations as informative about the migration process whereas 
the SC conditions on sampling locations.

DTA can therefore be highly biased by disproportionate sampling while the SC is 
more robust to uneven sampling.



DTA vs. the SC
Uneven sampling strongly biases DTA but not the structured coalescent.

De Maio et al. (PLoS Genetics, 2015)



DTA vs. the SC
DTA is also over confident in assigning ancestral state probabilities.

De Maio et al. (PLoS Genetics, 2015)Tomato yellow leaf curl virus



DTA vs. the SC

Structured coalescent models improve statistical performance but are 
fundamentally limited by the need to sample migration histories on trees.

This does not allow for very efficient MCMC sampling due to strong correlations 
between the migration histories and model parameters. Generally limited to about 
5 or 6 states and trees with < 1000 tips.

But what if there was a way to efficiently “integrate over” migration histories and 
therefore average over all possible paths a lineage could have taken? 



The Volz (2012) Structured Coalescent

Rather than sampling migration histories, we can probabilistically track the 
movement of each lineage back through time.

We can then write pairwise coalescent rates in terms of lineage state probabilities 
pik. Assuming lineage pairs can only coalesce if they’re in the same population:



The Volz (2012) Structured Coalescent

Rather than sampling migration histories, we can probabilistically track the 
movement of each lineage back through time.

We can then write pairwise coalescent rates in terms of lineage state probabilities 
pik. Assuming lineage pairs can only coalesce if they’re in the same population:

The theory in Volz (2012) is actually more general and allows birth/coalescent 
events to occur between populations at rate fkl. But we’ll return to this later.



The Volz (2012) Structured Coalescent

Lineage state probabilities pik can then be tracked backwards in time using a 
system of master equations (ODEs) based on the transition rates gkl: 

Volz (Genetics, 2012)



The Volz (2012) Structured Coalescent
Lineage state probabilities pik can then be tracked backwards in time using a 
system of master equations (ODEs) based on the transition rates gkl: 

 x

Volz (Genetics, 2012)

Flow in from 
other pops

Flow out to 
other pops



Spatial structure



Spatial SIR model



Estimates accounting for spatial structure



Movement of lineages



Conclusions
Coalescent models relate phylogenies of sampled lineages back to the larger 
demographic history of a population.

Coalescent methods can be used to reconstruct past population dynamics but 
other forces, especially population structure, also shape trees.

Structured coalescent models generalize coalescent models and are incredibly 
useful for modeling different forms of population structure.

SC models improve upon earlier discrete-trait phylogeographic methods but are 
less computationally efficient. Newer approaches like MASCOT that approximate 
lineage state probabilities offer a promising alternative.



Bonus lab: MASCOT

The MASCOT package for BEAST 2 implements a structured coalescent model that 
tracks lineage states probabilistically as in Volz (2012).

Uses an improved approximation to track lineage state probabilities

Allows for inference of pop sizes, migration rates and ancestral states

Can also use GLMs to predict migration rates based on explanatory variables

Müller et al. (Bioinformatics, 2017)


