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Coalescent models
track the ancestry
of sampled
lineages backwards
through time.



Basic coalescent theory

Coalescent theory describes the
ancestral relationships (i.e. genealogy)
of idealized individuals sampled from a
larger population.

i Time

We envision these sampled lineages
are embedded within the full ancestral
history of the population.
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Wright-Fisher assumptions

Coalescent theory is largely based on
simple demographic models like the
Wright-Fisher model

i Time

Constant population size of N haploid
individuals

Discrete, non-overlapping generations

Reproduction is a stochastic process
such that individuals leave a random
number of offspring.
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Basic coalescent theory

Because reproduction is random, the ancestral relationships among individuals is
also viewed as a stochastic process that generates random coalescent trees.
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Basic coalescent theory

The probability of two lineages
coalescing per generation is:

1
Pecoal = N

600 o0oo0obbdo o 0O 6 06 0 60 0 0 o020
TRENDS i Ecology & Evoluon

Kuhner et al. (2008)



Basic coalescent theory

The probability of two lineages
coalescing per generation is:

1
Pecoal = N

The probability of coalescing after n 7
generations is: "

Pr (X = ?’L) = (1 = pcoal)n_lpcoal °°°° ° {
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Basic coalescent theory

The probability of two lineages
coalescing per generation is:

1
Pecoal = N

The probability of coalescing after n
generations is:

PT(X = ’I’L) = (1 == pcoal)n_lpcoal

In continuous time:

PT'(X = t) = )\G_M A = Pcoal = N
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Basic coalescent theory

The waiting time for a pair of lineages to coalesce is exponentially distributed.
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A slightly more general coalescent model

The coalescent rate increases with the the amount of reproductive variance o2 in

the population: 2
)\coal — N
We can define an effective population size N
N
N, = —
e 0_2

More generally then, the coalescent rate is:
|

)\coal = “RF
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Coalescent trees with mutations
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Most coalescent models assume mutations are neutral such that mutations occur
independently of the coalescent process.



Coalescent trees and genetic diversity
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Genetic diversity depends directly on both the mutation rate p and the
coalescent rate. The expected average pairwise diversity is: H— 9N
== el



Now with more than two lineages

With k lineages present, the coalescent rate becomes:

(5)

Ne

)‘coal —

The binomial coefficient gives the total number of lineage pairs that could have

coalesced:
k B k(k—l)
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The coalescent likelihood

For a tree with n samples and n-1 coalescent events we can compute the likelihood
of the tree as:
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Coalescent-based inference

We can therefore infer demographic parameters like N, from a known phylogeny.
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We can therefore use
coalescent models to infer
the demographic history of a
population.



The signal of population size chan

population size
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Modeling population size changes

Parametric models assume population sizes change according to some population
dynamic model (e.g. exponential growth)

Nonparametric methods allow population sizes to change over time in an
unconstrained manner.

e Bayesian Skyline (Drummond et al., 2005)
e Bayesian Skygrid (Minin et al., 2008)



Nonparametric approaches

Generally assume population sizes change over time in a piecewise-constant

manner.
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Bayesian skyline
Assumes that the population size can only change at a fixed number of change

points.

Uses Bayesian MCMC to integrate (average) over all possible change point
positions in addition to N within each interval/epoch.

Intervals can contain multiple coalescent events allowing for better estimates of N,

Produces a smoothed estimate of N_ through time with credible intervals.

Drummond et al. (MBE, 2005)



Bayesian skyline plots

Bayesian skyline estimates of for Hepatitis C virus in Egypt
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Bayesian skyline plots for the flu in NC
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Limitations of simple coalescent models

Other forces beyond population dynamics influence coalescent rates and can
strongly shape phylogenies:

® Reproductive variance - we infer N_ instead of absolute N

e Selection is difficult to model because reproduction is non-random

e Population/spatial structure



How do we account for
population structure?
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Bayesian skyline estimates
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Spatial structure
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The problem with population structure

Standard coalescent models assume that all lineages in the tree are exchangeable.

Exchangeability here means that any lineage is equally likely to coalesce with any
other lineage in the tree.

Many forms of population structure violate this key assumption.



The structured coalescent

Relaxes the exchangeability assumption by letting
lineages move between different populations.
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The pairwise rate of coalescent between two lineages A

i and j will depend on their population states k and /. ¢ .
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Lineages sampled in different populations therefore
need to migrate back to the same population before

they can coalesce. Beerli and Felsenstein (2001)
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The structured coalescent

Each lineage pair is allowed to coalesce at a different rate 7\/.}. based on the locations
of lineages i andj.

However, we can still write down the likelihood of a tree given the rates AU.

n k k
L(T|0) = 11 /\ij exXp [— Z Z )\ijtk‘

k=2 i j>i

However, inference is much more difficult because we must now also infer the
location of each lineage through time.




The Migrate-n model

A structured coalescent model with migration between n subpopulations or demes

Models is parameterized in terms of a migration rate matrix M and a vector of

effective population sizes 6:

0 ml’g
m2,1 0

_mn,l mn,2

ml,n
m2,n

0

Model allows for likelihood-based inference of M and 6. BUT we need to use
MCMC to sample full migration histories along each lineage

Beerli and Felsenstein (2001)



Migrate-N and MultiTypelree

MCMC implementations of the structured coalescent like MIGRATE and
MultiTypeTree (Vaughan et al., 2014) sample migration histories on trees
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Phylogeography with the SC
The structured coalescent (SC) has become an attractive alternative to discrete-trait
analysis (DTA) for phylogeography

DTA treats sampling locations as informative about the migration process whereas
the SC conditions on sampling locations.

DTA can therefore be highly biased by disproportionate sampling while the SC is
more robust to uneven sampling.



DTA vs. the SC

Uneven sampling strongly biases DTA but not the structured coalescent.
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DTA vs. the SC

DTA is also over confident in assigning ancestral state probabilities.
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DTA vs. the SC

Structured coalescent models improve statistical performance but are
fundamentally limited by the need to sample migration histories on trees.

This does not allow for very efficient MCMC sampling due to strong correlations
between the migration histories and model parameters. Generally limited to about
5 or 6 states and trees with <1000 tips.

But what if there was a way to efficiently “integrate over” migration histories and
therefore average over all possible paths a lineage could have taken?



The Volz (2012) Structured Coalescent

Rather than sampling migration histories, we can probabilistically track the
movement of each lineage back through time.

We can then write pairwise coalescent rates in terms of lineage state probabilities
p,- Assuming lineage pairs can only coalesce if they’re in the same population:




The Volz (2012) Structured Coalescent

Rather than sampling migration histories, we can probabilistically track the
movement of each lineage back through time.

We can then write pairwise coalescent rates in terms of lineage state probabilities
p,- Assuming lineage pairs can only coalesce if they’re in the same population:

The theory in Volz (2012) is actually more general and allows birth/coalescent
events to occur between populations at rate f . But we’ll return to this later.
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The Volz (2012) Structured Coalescent

Lineage state probabilities p, can then be tracked backwards in time using a
system of master equations (ODEs) based on the transition rates g, ;
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The Volz (2012) Structured Coalescent

Lineage state probabilities p, can then be tracked backwards in time using a
system of master equations (ODEs) based on the transition rates g, |
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Spatial structure
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Spatial SIR model
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Estimates accounting for spatial structure
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Movement of lineages




Conclusions

Coalescent models relate phylogenies of sampled lineages back to the larger
demographic history of a population.

Coalescent methods can be used to reconstruct past population dynamics but
other forces, especially population structure, also shape trees.

Structured coalescent models generalize coalescent models and are incredibly
useful for modeling different forms of population structure.

SC models improve upon earlier discrete-trait phylogeographic methods but are
less computationally efficient. Newer approaches like MASCOT that approximate
lineage state probabilities offer a promising alternative.



Bonus lab: MASCOT

The MASCOT package for BEAST 2 implements a structured coalescent model that
tracks lineage states probabilistically as in Volz (2012).

Uses an improved approximation to track lineage state probabilities
Allows for inference of pop sizes, migration rates and ancestral states

Can also use GLMs to predict migration rates based on explanatory variables

Muller et al. (Bioinformatics, 2017)



