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The road ahead

This week: Modeling epidemic dynamics with SIR models

Next week: Stochastic models for simulation and inference

The week after: putting everything together with phylodynamic modeling



The general goal of 
infectious disease 
modeling is to better 
understand and 
explain epidemic 
dynamics.



Understanding epidemic dynamics

Why do epidemics rapidly grow and then decline?

Why do some outbreaks take off and not others?

Why do some diseases persist continuously and become endemic?

Why do some pathogens periodically re-emerge?

Why do some pathogens go extinct? How do we eliminate others?



These are all 
questions about 
infectious disease 
dynamics — changes 
over space and time.



Modeling dynamical systems

We describe the world around us using 
dynamical systems — a system that evolves 
over time.

We try to explain changes mechanistically in 
terms of processes we can empirically 
observe and measure (e.g. height of an apple).

Changes in important variables are described 
mathematically using differential equations. 



Understanding 
differential equations 
with almost no 
calculus***

***It all turns out to be a bunch of calculus in the end



The bathtub model

Let’s consider a bathtub where W(t) denotes the 
amount of water in the tub at time t.

The amount of water that flows in over time Δt

The amount of water that flows out is:



The bathtub model

So if we start with W(t), the amount of water 
after Δt is:

Using I and O to denote the flow rates:



The bathtub model

The difference between two time points gives the total amount of change over Δt:

We can then consider the instantaneous rate of change over a small interval of 
time Δt:  

We can write this as the derivative of W with respect to time, which gives us the 
differential equation:



Differential equations

Differential equations track the change in a variable (or the amount of “stuff”) per 
unit time.

Often, this is simple as accounting for the rate at which stuff flows in minus the rate 
at which flow stuff out, e.g.:



Compartmental models

Compartmental models track the rate at which “stuff” flows between different 
compartments or states.

Compartments can represent different tubs, populations, ect.

Flow between compartments can be tracked using a coupled system of differential 
equations.



SIR models



SIR Models

Susceptible-Infected-Recovered (SIR) models are compartmental models that focus 
on the infection status of individual hosts

The infection status of individual hosts changes over time. This can be represented 
as a flow diagram:

  

S I R



Modeling transmission

Transmission is normally modeled assuming random mixing. Incidence, or the rate 
of new infections, depends on the rate susceptible hosts contact infected hosts.

The transmission rate β reflects the contact rate between hosts multiplied by the 
probability of infection per contact (i.e. the rate of infectious contacts)

These models assume mass-action: individuals contact one another randomly so 
incidence only depends on the density of S and I hosts. Hosts within each 
compartment are assumed to be exchangeable. 



Contact rates

Contact rates between hosts can either be frequency or density-dependent.

Frequency-dependent: contact rate per infected host is independent of total 
population size N.

Density-dependent: contact rate depends on the population densities.

Generally, human infectious diseases are modeled as frequency-dependent 
whereas animal/plant diseases are modeled as density-dependent.



Modeling recovery

Infected individuals are assumed to recover at a constant rate γ over the course of 
infection. The total rate of recoveries in the infected population is:

The average infectious period is the reciprocal of the recovery rate:

A constant recovery rate assumes that individuals remain infected for an 
exponentially distributed amount of time.



The basic SIR model

The basic SIR model can be represented as a system of differential equations:

  

S I R



Epidemic dynamics under the SIR model

In the early stages of an 
epidemic, the number of 
infections (prevalence) 
grows exponentially as the 
number of infections 
increases.
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In the early stages of an 
epidemic, the number of 
infections (prevalence) 
grows exponentially as the 
number of infections 
increases.



Epidemic dynamics under the SIR model

Eventually the epidemic 
“burns out” as incidence 
declines due to a depletion 
of susceptible hosts.



The epidemic threshold: R0

The basic reproductive ratio R0 is the average number of secondary cases arising 
from a single infection in an entirely susceptible population:

R0 must be greater than one for an epidemic to take off.



Epidemic dynamics under the SIR model



R0 estimates for different pathogens

R0 varies significantly 
between pathogens. 

Because R0 depends on β, it 
is a function of both a 
pathogen’s infectiousness 
and host contact rates.



Just hypothetically…
say you’re a mad 
scientist with the goal 
of designing the 
perfect pathogen to 
eradicate humanity?



To design the perfect pathogen, what would you maximize?
(This is a hard one!)

A) Transmission rate β

B) Growth rate r

C) Reproductive number R0

D) Virulence (pathogenicity)
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To design the perfect pathogen, what would you maximize?
(This is a hard one!)

A) Transmission rate β

B) Growth rate r

C) Reproductive number R0

D) Virulence (pathogenicity)

The transmission-virulence trade-off 
(Alison et al., 2008)

Maximizing R0 maximizes the cumulative 
number of infections over time and therefore 
the long-term fitness of a pathogen.



The basic SIR model is pretty boring…



Incorporating host demography

Incorporating host demography allows us to consider long-term persistence and 
the endemic dynamics of a pathogen. Births replenish the susceptible population.

Births are generally assumed to occur at a constant rate 𝜈 and deaths at a constant 
rate 𝜇. The average lifespan of an individual is therefore 1/𝜇.

Note: it is common to assume that 𝜇 = 𝜈 such that the host population is in 
demographic equilibrium and N remains constant through time. 



The SIR model with host demography

The SIR with demography can be represented as a system of differential equations:

  

S I R

Births

Deaths



Epidemic dynamics with demography

Adding births allows the 
susceptible population to be 
replenished, which can give 
rise to complex oscillatory 
dynamics.



Epidemic dynamics with demography

Adding births allows the 
susceptible population to be 
replenished, which can give 
rise to complex oscillatory 
dynamics.

Eventually the system will 
reach endemic equilibrium:



Dynamical transitions in measles
Birth rates drive transitions in the periodicity of measles epidemics

Ferrari et al. (Nature, 2008)
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The vaccination threshold

We can consider a modified version of the SIR model with demography where a 
fraction p of newborns are vaccinated:

This system turns out to be dynamically identical to a system with a basic 
reproductive ratio R0’ reduced by the fraction 1 - p:



The vaccination threshold
In order to eradicate a 
pathogen through 
long-term vaccination, we 
need:

We therefore need to 
vaccinate a critical 
proportion of newborns pc: 
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vaccinate a critical 
proportion of newborns pc: 

Also applies to “herd immunity”



The vaccination threshold
In order to eradicate a 
pathogen through 
long-term vaccination, we 
need:

We therefore need to 
vaccinate a critical 
proportion of newborns pc: 

Measles

Chickenpox

COVID-19



There are many 
common variants of 
the SIR model



Common SIR model variants

SI models — infections with no recovery (e.g. HIV before antiretrovirals)

SIS models — infections with no long term immunity (e.g. gonorrhea)

SEIR models — infections with an “exposed” but not yet infectious incubation 
period (e.g. many plant pathogens)

SIRS — immunizing infections with waning immunity (e.g. pertussis)



More complex SIR model extensions

Multi-pathogen systems with competing pathogen strains (e.g. influenza)

Multi-host systems with host heterogeneity



Host population structure

Adding heterogeneity in the host population allows us to consider multiple forms of 
population structure:

● Age structure

● Gender structure

● Risk/contact structure

● Spatial structure



SIR models with multiple host classes

Each host as an assigned infection status and host class (e.g. S1, S2, I1, I2)

Hosts can transmit pathogens between different classes. Transmission between 
classes is parameterized as a transmission rate matrix:



SIR model with two classes

S1 I1 R1

S2 I2 R2



SIR model with n classes

This model can easily be generalized to consider any number of classes:

S1 I1 R1

S2 I2 R2



Modeling risk structure

Many host populations exhibit risk structure where there are individuals at high and 
low risk of becoming infected and/or transmitting.

This is one instance of the 80-20 rule where the majority of new infections (80%) 
result from just a small fraction of the host population (20%).



A SIS model with high/low risk groups

We’ll consider a two-class SIS model as appropriate for a non-immunizing STD:
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We’ll consider a two-class SIS model as appropriate for a non-immunizing STD:



Targeted control with risk-structure

As before, R0 must be less than one to prevent the epidemic from spreading and 
eradicate the pathogen. But how much do we need to vaccinate in each group?

Computing R0 is now more complex, but we can compute it using a next-generation 
matrix that gives the expected number of new infections in each risk group arising 
from a single infection in every other risk group:

 



Targeted control with risk-structure

As before, R0 must be less than one to prevent the epidemic from spreading and 
eradicate the pathogen. But how much do we need to vaccinate in each group?

Computing R0 is now more complex, but we can compute it using a next-generation 
matrix that gives the expected number of new infections in each risk group arising 
from a single infection in every other risk group:

Technical note: R0 is the leading eigenvalue of this next-generation matrix. 



Targeted control with risk structure



Targeted control with risk structure



Some final thoughts



Understanding epidemic dynamics

Why do epidemics rapidly grow and then decline?

Why do some outbreaks take off and not others?

Why are some diseases endemic and others epidemic?

Why do some pathogens go extinct? How do we eliminate others?



Final comments

The flexibility of SIR-type models lets us easily model the population dynamics of 
many different types of pathogens with almost any type of host population 
structure.

Multi-host models can easily be extended to include many different subpopulations. 
This becomes especially useful for modeling the spatio-temporal dynamics of 
metapopulations.

Challenge: Parameterizing these models becomes very difficult without 
disaggregated data on the number and source of infections in each population. 
This is where pathogen genetic data can help us!


