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The road ahead

This week: Modeling epidemic dynamics with SIR models
Next week: Stochastic models for simulation and inference

The week after: putting everything together with phylodynamic modeling



The general goal of
infectious disease
modeling is to better
understand and
explain epidemic
dynamics.



Understanding epidemic dynamics

Why do epidemics rapidly grow and then decline?

Why do some outbreaks take off and not others?

Why do some diseases persist continuously and become endemic?
Why do some pathogens periodically re-emerge?

Why do some pathogens go extinct? How do we eliminate others?



These are all
questions about
infectious disease
dynamics — changes
over space and time.



Modeling dynamical systems

We describe the world around us using
dynamical systems — a system that evolves
over time.

We try to explain changes mechanistically in
terms of processes we can empirically
observe and measure (e.g. height of an apple).

Changes in important variables are described
mathematically using differential equations.




Understanding
differential equations
with almost no
calculus™*

***t all turns out to be a bunch of calculus in the end



The bathtub model

Let’s consider a bathtub where W(t) denotes the
amount of water in the tub at time t.

The amount of water that flows in over time At

Inflow rate x At

The amount of water that flows out is:

Outflow rate x At




The bathtub model

So if we start with W(t), the amount of water
after At is:

W(t+ At) = W (t) + Inflow rate x At — Outflow rate x At

Using / and O to denote the flow rates:

W(t+ At) =W(t) + IAt — OAt




The bathtub model

The difference between two time points gives the total amount of change over At:

W(t+At)—W(t) = W) +IAL— OAt— W (1)
= IAt - OAt

We can then consider the instantaneous rate of change over a small interval of

time At:
W(t+At)—W(t) IAt—OAt

I —
At At v

We can write this as the derivative of W with respect to time, which gives us the

differential equation: AW
P R



Differential equations

Differential equations track the change in a variable (or the amount of “stuff”) per

unit time.

Often, this is simple as accounting for the rate at which stuff flows in minus the rate
at which flow stuff out, e.g.:

aw
L
dt ¢



Compartmental models

Compartmental models track the rate at which “stuff” flows between different
compartments or states.

Compartments can represent different tubs, populations, ect.

Flow between compartments can be tracked using a coupled system of differential
equations.




SIR models



SIR Models

Susceptible-Infected-Recovered (SIR) models are compartmental models that focus
on the infection status of individual hosts

The infection status of individual hosts changes over time. This can be represented
as a flow diagram:




Modeling transmission

Transmission is normally modeled assuming random mixing. Incidence, or the rate
of new infections, depends on the rate susceptible hosts contact infected hosts.

Incidence = 351

The transmission rate 3 reflects the contact rate between hosts multiplied by the
probability of infection per contact (i.e. the rate of infectious contacts)

These models assume mass-action: individuals contact one another randomly so
incidence only depends on the density of S and | hosts. Hosts within each
compartment are assumed to be exchangeable.



Contact rates

Contact rates between hosts can either be frequency or density-dependent.

Frequency-dependent: contact rate per infected host is independent of total
population size N.

S
Incid = p—1I
ncidence = 3 N

Density-dependent: contact rate depends on the population densities.

Incidence = 3S1

Generally, human infectious diseases are modeled as frequency-dependent

whereas animal/plant diseases are modeled as density-dependent.
D



Modeling recovery

Infected individuals are assumed to recover at a constant rate y over the course of
infection. The total rate of recoveries in the infected population is:

Total recoveries = v/

The average infectious period is the reciprocal of the recovery rate:

1
Mean infectious period = —

v
A constant recovery rate assumes that individuals remain infected for an
exponentially distributed amount of time.



The basic SIR model

The basic SIR model can be represented as a system of differential equations:

dS

— = _—AB9J
dt i

dl

— = BSI—~I
= BSI —2

dt




Epidemic dynamics under the SIR model
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Epidemic dynamics under the SIR model
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Epidemic dynamics under the SIR model

Eventually the epidemic
“burns out” as incidence
declines due to a depletion
of susceptible hosts.
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The epidemic threshold: R,

The basic reproductive ratio R is the average number of secondary cases arising
from a single infection in an entirely susceptible population:

p

Ry = 5 = [ X Average infectious period

R, must be greater than one for an epidemic to take off.



Epidemic dynamics under the SIR model
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R, estimates for different pathogens

R, varies significantly
between pathogens.

Because R, depends on G, it
is a function of both a
pathogen’s infectiousness
and host contact rates.
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Just hypothetically...
say you’re a mad
scientist with the goal
of designing the
perfect pathogen to
eradicate humanity?



To design the perfect pathogen, what would you maximize?
(This is a hard onel)

A) Transmission rate 3
B) Growth rate r
C) Reproductive number R

D) Virulence (pathogenicity)



To design the perfect pathogen, what would you maximize?
(This is a hard onel)

The transmission-virulence trade-off

A) Transmission rate 3 (Alison et al., 2008)
B) Growth rate r
C) Reproductive number R é
D) Virulence (pathogenicity) g
=
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Rate at which the infection ends
(mortality rate plus recovery rate)



To design the perfect pathogen, what would you maximize?

(This is a hard onel)

A) Transmission rate 3
B) Growth rate r
C) Reproductive number R

D) Virulence (pathogenicity)

Maximizing R ,maximizes the cumulative
number of infections over time and therefore
the long-term fitness of a pathogen.

The transmission-virulence trade-off
(Alison et al., 2008)

ﬁ*

Transmission rate

0 u u+ ot +y*
Rate at which the infection ends
(mortality rate plus recovery rate)



The basic SIR model is pretty boring...
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Incorporating host demography

Incorporating host demography allows us to consider long-term persistence and
the endemic dynamics of a pathogen. Births replenish the susceptible population.

Births are generally assumed to occur at a constant rate v and deaths at a constant
rate u. The average lifespan of an individual is therefore 1/u.

Note: it is common to assume that ¢ = v such that the host population is in
demographic equilibrium and N remains constant through time.



The SIR model with host demography

The SIR with demography can be represented as a system of differential equations:

% = v—pBSI —uS Births
dI
o = BSI=(y+ml i RN

/
dR
N ) 3




Epidemic dynamics with demography

Adding births allows the
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Epidemic dynamics with demography
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Dynamical transitions in measles

Birth rates drive transitions in the periodicity of measles epidemics
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Dynamical transitions in measles

Birth rates drive transitions in the periodicity of measles epidemics
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The vaccination threshold

We can consider a modified version of the SIR model with demography where a
fraction p of newborns are vaccinated:

ds

5 = v(1=p)=BSI—uS
dl

T = BSI — (v + p)!

dR

This system turns out to be dynamically identical to a system with a basic
reproductive ratio R’ reduced by the fraction 7- p:

Ry = (1-p)Ro



The vaccination threshold

In order to eradicate a
pathogen through
long-term vaccination, we
need:

R6= (1—p)R0< 1

We therefore need to
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The vaccination threshold
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The vaccination threshold

In order to eradicate a
pathogen through
long-term vaccination, we
need:
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There are many
common variants of

the SIR model



Common SIR model variants

S| models — infections with no recovery (e.g. HIV before antiretrovirals)
SIS models — infections with no long term immunity (e.g. gonorrhea)

SEIR models — infections with an “exposed” but not yet infectious incubation
period (e.g. many plant pathogens)

SIRS — immunizing infections with waning immunity (e.g. pertussis)



More complex SIR model extensions

Multi-pathogen systems with competing pathogen strains (e.g. influenza)

Multi-host systems with host heterogeneity



Host population structure

Adding heterogeneity in the host population allows us to consider multiple forms of
population structure:

e Age structure

e Gender structure

e Risk/contact structure

e Spatial structure



SIR models with multiple host classes

Each host as an assigned infection status and host class (e.g. S, S, /, 1)

Hosts can transmit pathogens between different classes. Transmission between
classes is parameterized as a transmission rate matrix:

B P2 - B
_/Bnl BnQ e Bnn_




SIR model with two classes
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SIR model with n classes

This model can easily be generalized to consider any number of classes:
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Modeling risk structure

Many host populations exhibit risk structure where there are individuals at high and
low risk of becoming infected and/or transmitting.

This is one instance of the 80-20 rule where the majority of new infections (80%)
result from just a small fraction of the host population (20%).



A SIS model with high/low risk groups

We'll consider a two-class SIS model as appropriate for a non-immunizing STD:

dSy

7 —BurSuly — BruSulr + Iy N,y = 200: Ny, = 800

dsS

d—tL = —BrrScdly — BurSctiu + Iy

dly 8= Bum Pur|  [10.0 0.6
dl

d—tL = BrrStly — BurSitly —vIL



An SIS model with high/low risk groups

We'll consider a two-class SIS model as appropriate for a non-immunizing STD:

Sy

7 —BuaSaly — BruSulL +vIu 08 ;

dSt, 3 06

T —BreSely — BarSela+911 H“E—’

dI 5 0.4 ©-0-0-0-0-0-0-0
d_tH = BunSulg + BruSuly — vlu I e

dl; 02 (i —e— High risk
el BroScly — BurScln — vIp . .,2'./'/ I e

0.0 2.9 5.0 F ) 10.0
Time



Targeted control with risk-structure

As before, R, must be less than one to prevent the epidemic from spreading and
eradicate the pathogen. But how much do we need to vaccinate in each group?

Computing Ro is now more complex, but we can compute it using a next-generation
matrix that gives the expected number of new infections in each risk group arising
from a single infection in every other risk group:



Targeted control with risk-structure

As before, R, must be less than one to prevent the epidemic from spreading and
eradicate the pathogen. But how much do we need to vaccinate in each group?

Computing Ro is now more complex, but we can compute it using a next-generation
matrix that gives the expected number of new infections in each risk group arising
from a single infection in every other risk group:

Technical note: R, is the leading eigenvalue of this next-generation matrix.



Targeted control with risk structure
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Targeted control with risk structure
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Some final thoughts



Understanding epidemic dynamics

Why do epidemics rapidly grow and then decline?
Why do some outbreaks take off and not others?
Why are some diseases endemic and others epidemic?

Why do some pathogens go extinct? How do we eliminate others?



Final comments

The flexibility of SIR-type models lets us easily model the population dynamics of
many different types of pathogens with almost any type of host population
structure.

Multi-host models can easily be extended to include many different subpopulations.
This becomes especially useful for modeling the spatio-temporal dynamics of
metapopulations.

Challenge: Parameterizing these models becomes very difficult without
disaggregated data on the number and source of infections in each population.
This is where pathogen genetic data can help us!



