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The data deluge

https://www.fda.gov/food/whole-genome-sequencing-wgs-program/genometrakr-fast-facts



Massive genomic 
datasets have pushed 
the limits of existing 
methods



The benefits of Bayesian inference have a cost

We have primarily focused on Bayesian phylogenetic methods because they allow 
for flexible, probabilistic modeling of pathogen evolution

While quantifying our uncertainty in epi/evo parameters as well as the pathogen 
phylogeny.

BUT these Bayesian methods are highly reliant on MCMC sampling.



The costs of Bayesian MCMC
Like a blind robot on a random walk, MCMC is inherently inefficient  



Problems with MCMC efficiency

Sampling via a random walk is inherently inefficient as it may take a long time for 
the chain to converge on the posterior distribution.

Using a Metropolis-Hastings step means many proposals are rejected.

Samples are generally highly autocorrelated, requiring a lot of wasted computation 
(thinning) to get pseudo-independent samples from the posterior.

Faster gradient-based MCMC methods (e.g. Hamiltonian Monte Carlo, NUTS) 
cannot be easily adapted to sampling from tree space. 



What do we even mean by big?

Long (many 
samples)

Wide (many sites/characters)



What is the bigger 
problem: the length 
or width of a genomic 
dataset?



Scaling with the number of sites

The likelihood of the sequence data is generally computed independently at each 
site.

Computation time therefore generally increases linearly with the number of sites 
(width) of an alignment.

Or even less than linearly because we actually only need to compute the likelihood 
once for each unique site pattern in an alignment.

 



Site patterns

Many site patterns will not 
be unique such that the cost 
of computing the likelihood 
will generally increase 
slightly less than linearly 
with the number of sites in 
an alignment.

Unique site 
pattern

Non-unique 
site pattern



Scaling with the number of samples

On the other hand, tree space grows 
exponentially with the number of 
tips or samples

We also need to estimate an 
additional branch length parameter 
for each sample we add.

MCMC methods thus scale very 
poorly with the number of samples

Red shows rooted binary trees.



Practical limits of Bayesian phylogenetics

Generally Bayesian phylogenetic inference using MCMC is limited to at most a 
few thousand samples.

Assuming a typical 10kb alignment, the figure below gives a rough approximation 
of how run times scale with sample size.
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Faster tree 
reconstruction 
methods



Nothing wrong with ML

A large number of biologists still use ML or other fast tree reconstruction methods.

Kumar (MBE, 2022)



Fast ML phylogenetic methods

Many popular ML-based methods use a similar reconstruction strategy:

1. A starting tree is obtained using a very fast approximate method like Neighbor 
Joining or Maximum Parsimony.

2. A hill climbing algorithm is used to search for trees with higher likelihood:
a. A new tree is proposed by a tree-rearrangement move like NNI or SPR.
b. Tree is accepted only if it increases the likelihood of the sequence data.

3. The search stops once no further improvements to the likelihood can be found
4. Optional: The entire process starting from step 1 is repeated with a different 

starting tree.

  



Fast ML phylogenetic methods

Zhou et. al. compared the performance of four of the most popular ML methods.

Zhou et al. (MBE, 2017)



Fast ML phylogenetic methods
FastTree can be 10-100X times faster than similar ML tree approaches.

Zhou et al. (MBE, 2017)



Fast ML phylogenetic methods
RAxML, PhyML and IQ-TREE 
perform about equally well.

Using multiple starting trees 
(x-10 runs) considerably helps 
in finding the best tree.

FastTree is considerably less 
accurate and rarely recovers 
the highest likelihood tree.

Zhou et al. (MBE, 2017)



Fast ML phylogenetic methods

There is an essential tradeoff between speed and accuracy determined by how 
exhaustively different ML methods search tree space.

My vote: These days I generally use RAxML or IQ-TREE. IQ-TREE might be gaining 
an edge since it has some nice features like built-in dating and ultra-fast bootstrap 
searches.

But I still use FastTree for explorative analyses with very large alignments (>10,000 
sequences) when fine-scale accuracy is less important than speed.

  



Don’t “reinvent the tree”

During epidemics, the number of sequences will generally grow rapidly over time, 
requiring online or real-time methods that can quickly incorporate new data.

Many fast ML methods like IQ-TREE and RAxML (via EPA-ng) allow for new samples 
to be placed on existing trees. This is known as sample placement.

This can however still be time consuming. Turakhia et al. (2021) found that it takes 
about 28 minutes to place one SARS-CoV-2 sample on an existing reference tree 
with 38,342 tips.  



Ultra-fast placement algorithms

UShER uses a maximum parsimony approach to search a mutation-annotated tree 
for a placement that requires the fewest additional mutations. 

Turakhia et al. (Nat. Genetics, 2021)
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Ultra-fast placement algorithms

Fast placement algorithms allow for ‘real-time’ phylogenetic inference during large 
epidemics by adding new samples and only periodically rebuilding the reference 
tree.

Works well when genetic diversity is limited and sequences are only separated by a 
few mutations. 

Danger zone: Parsimony is known to be less accurate than ML when there’s a 
reasonably high probability that multiple mutations (including reversions) have 
occurred along a branch.



Faster dating: 
methods for 
time-calibrated 
phylogenies



Root-to-tip regression

Recall that under a strict 
molecular clock model 
lineages will accumulate 
mutations at a constant rate 
such that the number of 
mutations between a tip and 
the root should increase 
linearly with time. 

Influenza A H1N1 
2000-2011

Clock rate = 4.38 x 10-3



Root-to-tip regression

Thus if we regress root-to-tip 
divergence (in number of 
mutations) against sampling 
times, the slope of the 
resulting regression line will 
give us a rough estimate of 
the molecular clock rate. 

Influenza A H1N1 
2000-2011

Clock rate = 4.38 x 10-3



Least-squares dating

Least-squares dating methods like LSD (To et al., 2016) use root-to-tip regression to 
estimate clock rates and node heights (i.e. divergence times).

The node heights ti and clock rate ω can be estimated together using least-squares 
optimization:

This is very similar to standard least-squares regression: we try to minimize the 
deviation between the observed branch lengths bi and the expected number of 
mutations ω(ti - ta(i)) along that branch under the molecular clock assumption. 



How do dating methods compare?

Regression-based methods like LSD generally return molecular clock estimates that 
are very similar to Bayesian dating methods.

Duchene et al. (Bioinformatics, 2016)



Other fast dating methods

TempEst: Simple GUI app for root-to-tip regression from the creators of BEAST 
(Rambaut et al., 2016). See tutorial from week one for an example.

TimeTree: Iteratively optimizes branch lengths and ancestral sequences in a 
maximum likelihood framework. Available in the TimeTree Python package 
(Sagulenko et al., 2018).

BactDating: Allows for Bayesian inference of divergence times from a fixed tree. 
Quantifies uncertainty in divergence times and partially accounts for recombination 
(Didelot et al., 2018).



Faster ancestral state 
reconstruction



Ancestral state reconstruction

Ancestral state reconstruction is widely used 
to reconstruct changes in the state of 
lineages along a tree.

In phylogeography, ancestral states are 
often locations but a lineage’s state could 
refer to its host population, genotype or 
even its entire sequence.

Given a fixed tree, maximum parsimony (MP) 
and maximum likelihood (ML) methods allow 
for very efficient reconstructions.

Streicker et al. (Science, 2010)



Likelihood of sequence data on trees

A C T G

A G T G

A C T G

A C T G

Maximum likelihood methods work very similar to how we computed the 
likelihood of sequence data given a tree using Markovian evolutionary models.



Modeling molecular evolution
We can compute transition probabilities under a continuous-time Markov model 
given our substitution matrix Q and the time elapsed along a branch t.

The elements of P(t) give us the probability of every possible transition. Importantly, 
these transition probabilities take into account every possible substitution path.



Computing likelihoods at one site
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We can compute the likelihood of the sequence data given each possible 
ancestral state:

t



Computing likelihoods at one site

A C T G

A G T G

A C T G

? ? ? ?

Then find the ancestral state that maximizes the likelihood of the sequence data:

t



ML ancestral state reconstruction

ML inference allows for state reconstruction under standard Markovian models of 
sequence or character evolution like the General-Time-Reversible (GTR) model that 
allow for transition rates to differ between states.

While ML inference does not allow for full quantification of uncertainty about all 
parameters, it allows for ancestral state probabilities to be computed using the 
relative likelihood of each state.

Methods like PastML (Ishikawa et al., 2019) allow for efficient inference of both 
transition rates and ancestral states.



Ancestral reconstructions with PastML
PastML allows for ancestral histories to be compressed into simpler graphs like in 
this example showing the global dissemination of dengue virus serotype 2.

Ishikawa et al. (MBE, 2019)



MP ancestral state reconstruction

Maximum parsimony reconstructions assume a “minimal evolution” model that 
minimizes the number of state changes required to explain the observed states at 
the tips of the tree.

MP works well when transition rates are low such that the probability of multiple 
state changes along a lineage is low. In this case, the most likely ancestral state 
mapping will also be the most parsimonious.

But with more rapid character evolution, the most parsimonious history may not be 
the most likely as it may be unlikely that only a single state change has occurred.



MP algorithms
MP allows for ultra-fast reconstructions using 
clever dynamic programming methods. 
Generally these involve just two steps:

A post-order (tip-to-root) traversal: The number 
of changes required to explain the tip data 
subtending each internal node are computed

1 1

1 2
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MP ancestral state reconstruction

The main advantage of MP reconstructions is speed. There are no parameters to 
estimate and reconstructions generally take less than a second even for trees with 
thousands of tips.

Thus ultra-fast placement methods like UShER also use MP to place additional 
samples on existing trees.

Popular phylogenetic software packages like MEGA and Mesquite implement MP 
reconstructions. 



Learning to let go: 
sub- and re-sampling 
strategies



Subsampling

It’s important to remember that it is often possible to answer the questions of 
interest to us with much smaller datasets than the total available data.

Subsampling strategies allow us to down-sample data sets to more manageable 
sizes while correcting for biased sampling in the original dataset.

Resampling strategies: allow us to explore how sampling choices may be 
influencing our inferences.



Global bias in SAR-CoV-2 sampling



Reconstructing CoV imports and exports

Wilkinson et al. (Science, 2021)



Reconstructing CoV imports and exports

A large number of imports were identified early in the epidemic, mostly form Europe.

Wilkinson et al. (Science, 2021)



Reconstructing CoV imports and exports

However, the number of imports/exports identified will almost certainly depend on 
how pathogen genomes were sampled in and outside of Africa.

We therefore performed a rarefaction analysis where we systematically varied the 
fraction of sampled genomes from either Africa or the rest of the world.

Basic strategy:

1. Build ML tree for full data set
2. Subsample a fraction x of genomes for a given location
3. Reconstruct ancestral locations using MP based on new subsampled tree
4. Count number of imports/exports identified at sampling fraction x  



Reconstructing CoV imports and exports

Wilkinson et al. (Science, 2021)



Reconstructing CoV imports and exports

Vastly more introductions would 
have been identified with increased 
sampling in Africa or globally,  
suggesting that the intros identified 
are really just the “ears of the 
hippo”.   

Wilkinson et al. (Science, 2021)



Optional tutorial for this week
Allows you to work with large SARS-CoV-2 datasets to see how the number of viral 
imports/exports depends on sampling effort.  



Final thoughts



After the data deluge

https://www.nature.com/articles/
d41586-021-00525-x

https://www.nature.com/articles/d41586-021-00525-x
https://www.nature.com/articles/d41586-021-00525-x


Final thoughts

Maximum likelihood and parsimony methods allow us to efficiently explore much 
larger datasets than currently possible with Bayesian methods.

More efficient tree building, dating, ancestral state reconstruction and subsampling 
strategies can be combined into efficient workflows for working with massive 
datasets.  

Regardless of how big your dataset is, the methods we discussed allow for easier 
and more efficient data exploration strategies that can be run upstream of more 
computationally intensive analyses.


