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The data deluge

220 countries and territories shared 16,440,628 viral genome sequences from human cases of COVID-19 via GISAID since 10 January 2020.

Percentage of COVID-19 cases shared via GISAID
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The data deluge
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Massive genomic
datasets have pushed
the limits of existing
methods



The benefits of Bayesian inference have a cost

We have primarily focused on Bayesian phylogenetic methods because they allow
for flexible, probabilistic modeling of pathogen evolution

While quantifying our uncertainty in epi/evo parameters as well as the pathogen
phylogeny.

BUT these Bayesian methods are highly reliant on MCMC sampling.



The costs of Bayesian MCMC

Like a blind robot on a random walk, MCMC is inherently inefficient
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Problems with MCMC efficiency

Sampling via a random walk is inherently inefficient as it may take a long time for
the chain to converge on the posterior distribution.

Using a Metropolis-Hastings step means many proposals are rejected.

Samples are generally highly autocorrelated, requiring a lot of wasted computation
(thinning) to get pseudo-independent samples from the posterior.

Faster gradient-based MCMC methods (e.g. Hamiltonian Monte Carlo, NUTS)
cannot be easily adapted to sampling from tree space.



What do we even mean by big?

Long (many
samples)

4 =
Wide (many sites/characters)



What is the bigger
problem: the length
or width of a genomic
dataset?



Scaling with the number of sites

The likelihood of the sequence data is generally computed independently at each
site. .

L(Seq|Tree) = H L(Seqi|Tree)
i=1

Computation time therefore generally increases linearly with the number of sites
(width) of an alignment.

Or even less than linearly because we actually only need to compute the likelihood
once for each unique site pattern in an alignment.



Site patterns

Many site patterns will not
be unique such that the cost
of computing the likelihood
will generally increase
slightly less than linearly
with the number of sites in
an alignment.

Unique site Non-unique
pattern site pattern



Scaling with the number of samples
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Practical limits of Bayesian phylogenetics

Generally Bayesian phylogenetic inference using MCMC is limited to at most a

few thousand samples.

Assuming a typical 10kb alignment, the figure below gives a rough approximation
of how run times scale with sample size.
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Faster tree
reconstruction
methods



Nothing wrong with ML

A large number of biologists still use ML or other fast tree reconstruction methods.
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Fast ML phylogenetic methods

Many popular ML-based methods use a similar reconstruction strategy:

1. A starting tree is obtained using a very fast approximate method like Neighbor
Joining or Maximum Parsimony.

2. Anill climbing algorithm is used to search for trees with higher likelihood:
a. Anew tree is proposed by a tree-rearrangement move like NNI or SPR.
b. Tree is accepted only if it increases the likelihood of the sequence data.

3. The search stops once no further improvements to the likelihood can be found
4. QOptional: The entire process starting from step 1is repeated with a different
starting tree.



Fast ML phylogenetic methods

Zhou et. al. compared the performance of four of the most popular ML methods.

Table 1. Overview of the Four Fast ML-Based Phylogenetic Programs Evaluated in This Study.

Programs Optimality Starting Tree Topological Moves Supported Models Partitioned
Criterion Analysis
AA DNA
RAXML v8.2.0 ML Parsimony/random/custom SPR Common and JC69, K80, Y
(ExaML v3.0.17) custom models HKY85, GTR
PhyML v20160530 ML Parsimony/random/custom Interleaved NNI and SPR  Common and Common and Y
custom models custom models
IQ-TREE v1.4.2 ML BION) and multiple NNI and stochastic Common and Common and Y
parsimony/random/custom perturbation custom models custom models
FastTree v2.1.9 ML Heuristic N) NNI and SPR (ME) JTT, WAG, LG JC69, GTR N

followed by NNI (ML)

Note.—ML, maximum likelihood; ME, minimum evolution; NJ, neighbor joining NNI, nearest neighbor interchange; SPR, subtree pruning and re-grafting.

Zhou et al. (MBE, 2017)



Fast ML phylogenetic methods

FastTree can be 10-100X times faster than similar ML tree approaches.
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Fast ML phylogenetic methods

RAxXML, PhyML and IQ-TREE
perform about equally well.

Using multiple starting trees
(x-10 runs) considerably helps
in finding the best tree.

FastTree is considerably less
accurate and rarely recovers
the highest likelihood tree.
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Fast ML phylogenetic methods

There is an essential tradeoff between speed and accuracy determined by how
exhaustively different ML methods search tree space.

My vote: These days | generally use RAXML or IQ-TREE. IQ-TREE might be gaining
an edge since it has some nice features like built-in dating and ultra-fast bootstrap

searches.

But | still use FastTree for explorative analyses with very large alignments (>10,000
sequences) when fine-scale accuracy is less important than speed.



Don’t “reinvent the tree”

During epidemics, the number of sequences will generally grow rapidly over time,
requiring online or real-time methods that can quickly incorporate new data.

Many fast ML methods like IQ-TREE and RAXML (via EPA-ng) allow for new samples
to be placed on existing trees. This is known as sample placement.

This can however still be time consuming. Turakhia et al. (2021) found that it takes
about 28 minutes to place one SARS-CoV-2 sample on an existing reference tree

with 38,342 tips.



Ultra-fast placement algorithms

UShER uses a maximum parsimony approach to search a mutation-annotated tree
for a placement that requires the fewest additional mutations.

UShER
St

S2

Root
S3

S4

Node List of mutations
0 (root) ()
1 (G1U, C4U, G6A)
2 (C7A)
S1 (C8U)
S2 (A9G)
S3 (A12G)
S4 (A13G)
S5 (G1U, C7A)

206 bytes

Turakhia et al. (Nat. Genetics, 2021)



Ultra-fast placement algorithms

UShER uses a maximum parsimony approach to search a mutation-annotated tree
for a placement that requires the fewest additional mutations.
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Turakhia et al. (Nat. Genetics, 2021)



Ultra-fast placement algorithms

UShER uses a maximum parsimony approach to search a mutation-annotated tree
for a placement that requires the fewest additional mutations.
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Turakhia et al. (Nat. Genetics, 2021)



Ultra-fast placement algorithms

Fast placement algorithms allow for ‘real-time’ phylogenetic inference during large
epidemics by adding new samples and only periodically rebuilding the reference
tree.

Works well when genetic diversity is limited and sequences are only separated by a
few mutations.

Danger zone: Parsimony is known to be less accurate than ML when there’s a
reasonably high probability that multiple mutations (including reversions) have
occurred along a branch.



Faster dating:
methods for
time-calibrated
phylogenies



Root-to-tip regression

Recall that under a strict
molecular clock model
lineages will accumulate
mutations at a constant rate
such that the number of
mutations between a tip and
the root should increase
linearly with time.
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Root-to-tip regression

Thus if we regress root-to-tip
divergence (in number of
mutations) against sampling
times, the slope of the
resulting regression line will
give us a rough estimate of
the molecular clock rate.
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Least-squares dating

Least-squares dating methods like LSD (To et al., 2016) use root-to-tip regression to
estimate clock rates and node heights (i.e. divergence times).

The node heights ¢, and clock rate w can be estimated together using least-squares

optimization: -1

d(w,t1,...,tp—1) = Z (bi w(ti—ta(i)))z
1_2
This is very similar to standard least-squares regression: we try to minimize the
deviation between the observed branch lengths b, and the expected number of
mutations w(t, - ta(i)) along that branch under the molecular clock assumption.




How do dating methods compare?

Regression-based methods like LSD generally return molecular clock estimates that
are very similar to Bayesian dating methods.
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Other fast dating methods

TempEst: Simple GUI app for root-to-tip regression from the creators of BEAST
(Rambaut et al., 2016). See tutorial from week one for an example.

TimeTree: Iteratively optimizes branch lengths and ancestral sequences in a
maximum likelihood framework. Available in the TimeTlree Python package
(Sagulenko et al., 2018).

BactDating: Allows for Bayesian inference of divergence times from a fixed tree.

Quantifies uncertainty in divergence times and partially accounts for recombination
(Didelot et al., 2018).



Faster ancestral state
reconstruction



Ancestral state reconstruction

Ancestral state reconstruction is widely used
to reconstruct changes in the state of
lineages along a tree.

In phylogeography, ancestral states are
often locations but a lineage’s state could
refer to its host population, genotype or
even its entire sequence.

Given a fixed tree, maximum parsimony (MP)
and maximum likelihood (ML) methods allow
for very efficient reconstructions.

Streicker et al. (Science, 2010)



Likelihood of sequence data on trees

ACITG

\ AlCIT G

AGITG

ACTG

Maximum likelihood methods work very similar to how we computed the
likelihood of sequence data given a tree using Markovian evolutionary models.



Modeling molecular evolution

We can compute transition probabilities under a continuous-time Markov model
given our substitution matrix Q and the time elapsed along a branch t.

P(t) = %

The elements of P(t) give us the probability of every possible transition. Importantly,
these transition probabilities take into account every possible substitution path.
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Computing likelihoods at one site
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We can compute the likelihood of the sequence data given each possible

ancestral state:
L(Seq|Tree) = Poo(t) x Poa(t)



Computing likelihoods at one site
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Then find the ancestral state that maximizes the likelihood of the sequence data:

ML state = argmax (Px,c(t) * Pxc(t))
Xe{A,C,T,G}



ML ancestral state reconstruction

ML inference allows for state reconstruction under standard Markovian models of
sequence or character evolution like the General-Time-Reversible (GTR) model that
allow for transition rates to differ between states.

While ML inference does not allow for full quantification of uncertainty about all
parameters, it allows for ancestral state probabilities to be computed using the
relative likelihood of each state.

Methods like PastML (Ishikawa et al., 2019) allow for efficient inference of both
transition rates and ancestral states.



Ancestral reconstructions with PastML

PastML allows for ancestral histories to be compressed into simpler graphs like in
this example showing the global dissemination of dengue virus serotype 2.

Ishikawa et al. (MBE, 2019)




MP ancestral state reconstruction

Maximum parsimony reconstructions assume a “minimal evolution” model that
minimizes the number of state changes required to explain the observed states at
the tips of the tree.

MP works well when transition rates are low such that the probability of multiple
state changes along a lineage is low. In this case, the most likely ancestral state

mapping will also be the most parsimonious.

But with more rapid character evolution, the most parsimonious history may not be
the most likely as it may be unlikely that only a single state change has occurred.



MP algorithms

MP allows for ultra-fast reconstructions using
clever dynamic programming methods.
Generally these involve just two steps:

A post-order (tip-to-root) traversal: The number
of changes required to explain the tip data
subtending each internal node are computed
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MP algorithms
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clever dynamic programming methods.
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MP ancestral state reconstruction

The main advantage of MP reconstructions is speed. There are no parameters to

estimate and reconstructions generally take less than a second even for trees with
thousands of tips.

Thus ultra-fast placement methods like UShER also use MP to place additional
samples on existing trees.

Popular phylogenetic software packages like MEGA and Mesquite implement MP
reconstructions.



Learning to let go:
sub- and re-sampling
strategies



Subsampling

It's important to remember that it is often possible to answer the questions of
interest to us with much smaller datasets than the total available data.

Subsampling strategies allow us to down-sample data sets to more manageable
sizes while correcting for biased sampling in the original dataset.

Resampling strategies: allow us to explore how sampling choices may be
influencing our inferences.



Global bias in SAR-CoV-2 sampling

220 countries and territories shared 16,440,628 viral genome sequences from human cases of COVID-19 via GISAID since 10 January 2020.

Percentage of COVID-19 cases shared via GISAID
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Reconstructing CoV imports and exports
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Reconstructing CoV imports and exports

A large number of imports were identified early in the epidemic, mostly form Europe.

D

Gambla ————4

2 ————
& wqa\ PR
Uganda —————4@

Egypt ——@
DRC ——@

Nigeria ————&

Kenya ———¢

Rest of
the world

South o
Africa

Origins

' Connection [l Atrica-africa [JJij Africa-world

rrmm

Mozambique
#— DRC
®— Zimbabwe

®— Egypt
@®— Ghana
@®— Nigeria
@— Kenya

South
Africa

Rest of
- the world

Destination

World-Africa

Sources of viral introductions into African countries

2 A

0.00
§ 2 % % 5 8
2020 Date 2021
Oriain - Other African countries |_| Rest of the world
C International introductions into Africa
60
€ 40
=
o
o |] Uﬂ] um..:ﬂﬂuﬂ
0 -d] Hmmmﬂﬂuﬂm-uuﬂu u- =
= > a =
5 2 & 3 $ g
2020 Date 2021

Origin: [Jl] Asia [] Europe [Jl] North America [_] Oceania [Jl] South America
Wilkinson et al. (Science, 2021)




Reconstructing CoV imports and exports

However, the number of imports/exports identified will almost certainly depend on
how pathogen genomes were sampled in and outside of Africa.

We therefore performed a rarefaction analysis where we systematically varied the
fraction of sampled genomes from either Africa or the rest of the world.

Basic strategy:

Build ML tree for full data set

Subsample a fraction x of genomes for a given location

Reconstruct ancestral locations using MP based on new subsampled tree
Count number of imports/exports identified at sampling fraction x

H WN o



Reconstructing CoV imports and exports
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Reconstructing CoV imports and exports
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Optional tutorial for this week

Allows you to work with large SARS-CoV-2 datasets to see how the number of viral
imports/exports depends on sampling effort.

Molecular Epidemiology of Infectious Diseases

# Plot exports into NC
About Lectures Readings Syllabus Tutorials fig, ax = plt.subplots(figsize=(8, 5))

exports_by_state = exports_df['Destination'].value_counts()
sns.barplot(exports_by_state.index, exports_by_state.values)
ax.set_ylabel('Exports into NC')

Tracking SARS-CoV-2 imports using e
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Final thoughts



After the data deluge

https://www.nature.com/articles/
d41586-021-00525-x

f #
Soldiers disinfecting parts of Brasilia’s underground rail network as the coronavirus spread throughout Brazil in late March 2020.

Want to track pandemic variants faster?
Fix the bioinformatics bottleneck
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https://www.nature.com/articles/d41586-021-00525-x
https://www.nature.com/articles/d41586-021-00525-x

Final thoughts

Maximum likelihood and parsimony methods allow us to efficiently explore much
larger datasets than currently possible with Bayesian methods.

More efficient tree building, dating, ancestral state reconstruction and subsampling
strategies can be combined into efficient workflows for working with massive
datasets.

Regardless of how big your dataset is, the methods we discussed allow for easier
and more efficient data exploration strategies that can be run upstream of more
computationally intensive analyses.



