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Genomic data has
given us new power
to track the spread of
infectious pathogens



Course overview

“This course will focus on how phylogenetic and population genomic methods are
used to track the spread of infectious diseases using pathogen genomic data. We
will explore how models and methods can be adapted to the epidemiology and
natural history of different pathosystems, including viral, bacterial and fungal
pathogens in plants, animals and humans. Topics include reconstructing
epidemic dynamics, spatial movement (phylogeography), transmission networks,
recombination and adaptive evolution.”



Hourglass format of course

Starting from very different backgrounds

Core phylogenetic methods applicable across systems

More targeted applications and team projects




Weekly course structure

The course will meet twice per week.
The Monday session will generally be a lecture or discussion.

The Wednesday session will be tutorial-based and provide the opportunity to apply
methods to real data with a few optional coding exercises.



Coursework and grades

“Everyone should get a A”

There is no graded work other than a team project focusing on a pathogen and
dataset of your choice during the second half of the semester.

But please do:

e ook at the suggested readings.
e Participate in class discussions and tutorials
e Come to class ready to ask questions and discuss problems



Genomic data has
given us new power
to track the spread of
infectious pathogens



The importance of phylogenies

While there are many methods for analyzing pathogen
genomic data, this lecture and most of the first half of the
semester will examine phylogenetic methods.



Phylogenies describe the
ancestral (parent-child)
relationships among
individuals or taxa in terms of
shared descent.

Image from The Book of Trees (Manuel Lima, 2014)



Why phylogenies?

1.

The branching structure of
pathogen phylogenies can be
directly related back to the
transmission process.

Thinking phylogenetically can help
us understand how epidemic
dynamics shape genetic variation in
a pathogen population.

Image from The Book of Trees (Manuel Lima, 2014)



Let’s start by
considering a small
epidemic spreading
through a host
population



A simple epidemic example
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A simple epidemic example
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Transmission tree



A simple epidemic example
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A simple epidemic example
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A simple epidemic example
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Phylogenies can tell us about:

e Linkage and the sources of transmission
e The origins of epidemics and new strains
e Past epidemic dynamics

e Pathogen fithess and adaptation
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Revealing the source of infections

Classic sources of epidemiological data like time series of case reports are typically
not informative about the sources of new infections

19 20

The genetic relatedness of pathogens sampled from different hosts or
environments provides us with information about possible transmission routes

including the source of new infections.



Phylogenetic linkage

We can “link” or connect @ Cats @ Dogs
infections to determine who

might be infecting whom
based on phylogenetic

relationships.
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Ancestral state reconstruction
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Ancestral state reconstruction
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Ancestral states can therefore allow
us to infer the direction of infection.
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De Maio et al. (PCB, 2016)




Phylogenies can tell us about:

e Linkage and the sources of transmission
e The origins of epidemics and new strains
e Past epidemic dynamics

e Pathogen fithess and adaptation



Origins of the HIV-1 epidemic

Faria et al. (Science, 2014) traced the origins of the HIV-1 epidemic back to the
1920’s and 30’s in Kinshasa, DRC.




Origins of Mycosphaerella graminicola

Stukenbrock et al. (MBE, 2006) traced the fungal pathogen causing septoria leaf
blotch on wheat back to 8,000 to 9,000 BC in the Fertile Crescent.
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M. graminicola on wheat (Wikipedia)
Now named Zymoseptoria tritici




Neolithic origins of other agro-pathogens

Supports idea that many agriculturally important pathogens today arose during the
Neolithic transition to farming.

Table 1 Examples of evolutionary mechanisms by which plant pathogens have emerged in agro-ecosystems over different
time scales

« . .
Evolutionary mechanism Plant pathosystem Time scale Reference N e O I Ith I C p a t h O g e n
Domestication/host-tracking . 9
Mycosphaerella graminicola on wheat 10-12,000 years BP 95 re | O C a tl O n C a m p S
Magnaporthe oryzae on rice 7000 years BP 24
Phytophthora infestans on potato 7000 years BP 34
Ustilago maydis on maize 8000 years BP 72
Host jump/host shift J.a,'.".e,i,cnsf"t,t
Magnaporthe oryzae from Setaria millet | Abrupt evolutionary change, approx. 24 A a 1 s
to rice 7000 years BP g »
Rhbynchosporium secalis from wild grasses | Abrupt evolutionary change, approx. 111 tll?e E ra I n
to barley and rye 2,000 years BP A ORI TIE U SEs.
Phytophthora infestans from wild Abrupt evolutionary change, 35,39 bt ’Y i,
Solanum species to potato <500 years BP . i

Stukenbrock and McDonald (Annu. Rev. Phyto., 2008)



Phylogenies can tell us about:

e Linkage and the sources of transmission
e The origins of epidemics and new strains
e Past epidemic dynamics

e Pathogen fithess and adaptation



A simple epidemic example with
incomplete sampling

)



A simple epidemic example with
incomplete sampling

)

We only observe transmission events as branching events if we sample both the parent and child lineage descending from the
transmission event



This brings us to
phylodynamic
modeling



Phylodynamic
modeling in a nutshell

Phylogenies will only contain sampled
lineages.

The sampled lineages are embedded
within the full ancestral history of the
population.

We need a statistical model that allows

us to infer the most likely population QQ R
history from the sampled phylogeny. Foooou®hoY ososdoob ot

Kuhner et al. (2008)



Two types of phylodynamic models
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Coalescent theory

The coalescent traces the ancestry of
sampled individuals back in time.

i Time

Allows us to relate events observed in
the tree to the larger history of a
population

Probability of two lineages coalescing AP L PR SR e
per generation is: Co Ll (T
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Kuhner et al. (2008)



Reconstructing population dynamics

population size
population size




Reconstructing dynamics: influenza A

The genomic and epidemiological
dynamics of human influenza A virus

Andrew Rambaut', Ofiver G. Pybus’, Martha | Nelson', Cecile Viboud', Jeflery K. Taubenderger’
& Edward C. Holmes'*
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Reconstructing dynamics: influenza A
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Bedford et al. (Nature, 2015)




Coupling epidemiological models to trees

We can use phylodynamic modeling to couple phylogenetic methods with more
traditional epidemiological models




We can formulate
epidemic models
that we can then fit
to phylogenies to
estimate parameters
of interest.



HIV in rural Kwa-Zulu Natal




A simple two-patch SIR model for HIV
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Phylodynamic estimates of HIV incidence

Incidence (%)
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Rasmussen et al. (Virus Evolution, 2018)



Phylodynamic estimates of HIV incidence
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Rasmussen et al. (Virus Evolution, 2018)



Tracking lineage movement
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Incidence due to external introductions

Incidence (%)
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Rasmussen et al. (Virus Evolution, 2018)



Incidence due to external introductions
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Phylogenies can tell us about:

e Linkage and the sources of transmission
e The origins of epidemics and new strains
e Past epidemic dynamics

e Pathogen fithess and adaptation



Phylodynamics with selection

Selection for higher fitness strains strongly shapes the phylogenetic history of many
different pathogens.
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Measles virus
population phylogeny

Time

HIV population phylogeny HIV within host phylogeny

uman influenza A virus
population phylogeny

Grenfell et al. (Science, 2004)




We therefore need
phylodynamic models
that allow selection to
shape trees



Multi-type birth-death models

Provide one way of incorporating adaptive (non-neutral) evolution into phylogenetic
models.




Multi-type birth-death models
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Multi-type birth-death models
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Multi-type birth-death models

Sampling event




Multi-type birth-death models

/ Mutation event




Multi-type birth-death models
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Multi-type birth-death models

MTBD models allow us to compute the joint likelihood that both the tree and the
observed tip genotypes evolved exactly as observed (Stadler and Bonhoeffer,

2013).




Fitness shapes trees

More fit lineages will be transmitted
(branch) more often and leave behind
more sampled descendants than less fit
lineages.

Estimating transmission rates from the
branching structure of phylogenies using
MTBD provides us with one way to
directly estimate pathogen fitness from

genomic data.

Warmer colors = More fit



Fithess effects of antimicrobial resistance

We will consider fitness differences between drug-sensitive and antimicrobial

resistant (AMR) strains of a pathogen.

AMR
strain

[ Drugs Sensitive

Fitness

=i BB

Within-host  Between-host



Fitness of HIV drug resistance mutations
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Kihnert et al. (PLoS Pathogens, 2018)
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ithess of HIV drug resistance mutations
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41L 67N 70R 184V 210W 215D 2158 219Q 103N 108/ 138A 181C 190A 90M prior distribution

Resistance mutation

Table 1. Resistance mutations with numbers of corresponding clusters and samples, related drugs and drug usage dates within Switzerland.

nRTI NNRTL PL
Resistance mutation 41L 67N | 70R 184V | 210W | 215D | 2158 | 215Y | 219Q | 103N | 1081 | 138A | 181C | 190A | 90M
Number (#) of clusters of size > 2 56 23 19 35 18 18 16 25 20 25 10 46 8 8 14
#Sequences in clusters 927 667 712 1011 481 569 494 807 605 725 334 1014 329 311 389
# Resistant samples in clusters 93 39 26 4 26 41 31 28 28 38 11 109 10 12 38
Drug AZT | AZT | AZT 3TC AZT AZT | AZT | AZT | AZT | NVP | NVP | RPV | NVP | NVP | NFV
(SHCS drug codes) D4T | D4T | D4T | ABC D4T | D4T | D4T | D4T | D4T | EFV | EFV EFV | EFV | SQV
FTC ETV
RPV
Drug usage > 1% 1987 | 1987 | 1987 | 1995.5 1987 1987 | 1987 | 1987 1987 1997 | 1997 | 2013 | 1997 | 1997 | 1996

Kihnert et al. (PLoS Pathogens, 2018) Drug age < 1% et 111 1-T-1-1-T-7T-1:[x




Phylogenies can tell us about:

e Linkage and the sources of transmission
e The origins of epidemics and new strains
e Past epidemic dynamics

e Pathogen fithess and adaptation



What do you want to
learn from this class?



For Wednesday

On Wednesday we’ll start with a tutorial that should help us ease into working with
sequence data and trees.

Please have your laptops ready!
Try to install RAXML ahead of time

If you’re interested in doing the Python exercises, install Python (with Anaconda)
and Biopython.



