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“No scientific theory is worth anything unless it enables us to
predict something which is actually going on. Until that is
done, theories are a mere game of words, and not such a
good game as poetry”

J.B.S Haldane (Adventures of a Biologist, 1937)



Most of the
approaches we’ve
considered are
retrospective... can
we say anything
about the future?



Influenza A (H3N2)

New antigenic variants periodically replace
older strains:

e New antigenic variants emerge and
escape antibody-based immunity
against earlier strains.

e Antigenic drift leads to a ladder-like
structure with a trunk lineage

e Flu vaccines need to be updated
yearly to avoid antigenic mismatch.

Russell et al. (Science, 2008)



Forecasting short-term flu evolution
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Consider the evolution dynamics of
different influenza clades

The frequency X of a particular clade can
be predicted based on the fitness f, of
individual strains i in a clade:

R(t+1)= 3 xexp(f)

vt

Luskza & Lassig (Nature, 2014)




Influenza hemagglutinin and cell entry

Influenza virus

Hemagglutinin
protein

Surface of
respiratory
tract cell




Forecasting short-term flu evolution

Luskza & Lassig (2014) consider two main factors that influence the fitness £, of a
strain:

1) The amplitude of cross-immunity C(ai,aj) between strain j and all other strains

that have previously circulated in the host population
2) The fitness cost L(a) of deleterious mutations at non-antigenic sites

Their overall fithess mapping function is:

fi=fo—L(a;) — Z x;C(a;,a))

j: <t
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Forecasting short-term flu evolution
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Forecasting short-term flu evolution
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Can we predict
pathogen evolution
more generally?



What do we need to know?

What mutations/genotypes are available?
Will the fate of new variants be determined by selection or drift?
How do genotypes map to fithess-related phenotypes?

How does fithess translate to epidemic potential at the population level?
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Mutational limits on prediction

At the very least, we need to know what mutations/genotypes are in a population to
be able to predict anything about evolution



Genomic surveillance
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Mutational limits on prediction

At the very least, we need to know what mutations/genotypes are in a population to
be able to predict anything about evolution

Meaningful predictions are probably limited to short-term predictions about
standing genetic variation (or immediately accessible mutations).



Rapidly mutating microbes

Microbial evolution is often not
mutation limited - high mutation
rates and large population sizes
often ensure that all possible
mutations occur on relatively short
timescales.

Evolutionary predictions may then
be extended to all locally
accessible genotypes (e.g.
genotypes one mutation away
from existing strains).
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Mutational limits on prediction

At the very least, we need to know what mutations/genotypes are in a population to
be able to predict anything about evolution

Meaningful predictions are probably limited to short-term predictions about
standing genetic variation (or immediately accessible mutations).

Long-term predictions are limited by the stochastic nature of the mutation process
and what mutations will enter a population



What do we need to know?

What mutations/genotypes are available?
Will the fate of new variants be determined by selection or drift?
How do genotypes map to fithess-related phenotypes?

How does fithess translate to epidemic potential at the population level?



Genetic drift

Genetic drift refers to stochastic fluctuations in genotype frequencies caused by
random variation in reproduction and survival. Stochastic variation and drift play a
larger role in smaller populations.
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Genetic drift

The probability that a beneficial !
mutation reaches fixation (freq > 1.0) 03 1
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Selection vs. drift

The relative importance of selection versus drift is determined by N_s. At low values
of N_s drift will dominate selection, making prediction very difficult.

e

Selection dominates
(Ns>>1)

Drift dominates
(Nes <1)

Effective population size N

Selective advantage s
e



Clonal interference
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Clonal interference

Clonal interference enhances overall predictability:

Large pop sizes increase odds of evolution finding the most fit genotype even if
this requires multiple mutations.

The role of genetic drift becomes negligible relative to selection.

Clonal interference increases the chances that the “best” genotype with the largest
fitness advantages goes to fixation.

Due to clonal interference, evolution in large microbial populations may be more
predictable than others!



What do we need to know?

What mutations/genotypes are available?
Will the fate of new variants be determined by selection or drift?
How do genotypes map to fithess-related phenotypes?

How does fithess translate to epidemic potential at the population level?



Deep mutational scanning

Reverse genetics approaches can be used to systematically explore the genotype
to phenotype map using large libraries of mutants.
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But genetic context matters too

Luskza and Lassig found the models that only
consider “adaptive” changes in epitope regions
are 40% less accurate than models that all
consider changes in background fitness due to
deleterious mutations in other parts of the

genome.
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Context dependence

How predictable phenotypes/fitness are based on genotypes largely depends on
whether phenotypes are context dependent:

Epistasis: dependence on genetic background including interactions among
mutations

Pleiotropy: the effects of mutations on multiple traits or the same trait across
different environments.



Epistasis in fithess landscapes

Epistasis largely controls the smoothness/ruggedness of the fitness landscape.
Strong epistasis makes prediction difficult due to rugged landscapes.
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de Visser et al. (Nature Rev. Genetics, 2014)



Epistasis in fithess landscapes

Empirical fithess landscapes tend to have intermediate levels of ruggedness.
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Global epistasis

Idiosyncratic Epistasis Global Epistasis

Fitness Effect (Or Macroscopic Distribution Statistic)
Sign Epistasis

Predictor
(e.g., Fitness or a latent phenotype)

Johnson et al. (BMC Biology, 2023)



Global epistasis

Mutations often exhibit global
epistasis where their fitness
effects depend on starting fithess
but are “independent of the
specific identify of mutations
present in the background”.
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Global epistasis

Mutations often exhibit global
epistasis where their fithess
effects depend on starting fithess
but are “independent of the
specific identify of mutations
present in the background”.

This is often seen as “diminishing
returns” on the effects of
beneficial mutations in already fit
genotypes.
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Can we predict phenotypic evolution?

Phenotypic evolution may be predictable even if genotypic evolution has a low
degree of repeatability or predictability.

Phenotype
°
o,
°

Sequence space

Time

Lassig et al. (Nat. Ecol Evol, 2017)




What do we need to know?

What mutations/genotypes are available?
Will the fate of new variants be determined by selection or drift?
How do genotypes map to fithess-related phenotypes?

How does fithess translate to epidemic potential at the population level?



Forecasting short-term flu evolution
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“Any prediction of evolution
is essentially an estimate of
fitness differences between
strains”

Luksza & Lassig (2014)



Translating between scales

To make accurate predictions we need to know how pathogen phenotypes related
to within-host fitness translate to population-level fithess between hosts.

Within-host
evolution

Between-host
evolution



Fitness shapes pathogen phylogenies

More fit lineages will have higher
growth rates and therefore branch
more often... leaving behind more
sampled descendents in a phylogeny.

branching = birth/transmission events




Predicting evolution from tree shape

Branching rates in pathogen phylogenies correlate strongly with fitness
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Predicting evolution from tree shape

Branching rates in pathogen phylogenies correlate strongly with fitness
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Multi-type birth-death models

Allows for different types of individuals (e.g. genotypes) that can vary in their birth
or death rates and therefore their fitness values.
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ithess of HIV drug resistance mutations
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Resistance mutation

Table 1. Resistance mutations with numbers of corresponding clusters and samples, related drugs and drug usage dates within Switzerland.

nRTI NNRTL PL
Resistance mutation 41L 67N | 70R 184V | 210W | 215D | 2158 | 215Y | 219Q | 103N | 1081 | 138A | 181C | 190A | 90M
Number (#) of clusters of size > 2 56 23 19 35 18 18 16 25 20 25 10 46 8 8 14
#Sequences in clusters 927 667 712 1011 481 569 494 807 605 725 334 1014 329 311 389
# Resistant samples in clusters 93 39 26 4 26 41 31 28 28 38 11 109 10 12 38
Drug AZT | AZT | AZT 3TC AZT AZT | AZT | AZT | AZT | NVP | NVP | RPV | NVP | NVP | NFV
(SHCS drug codes) D4T | D4T | D4T | ABC D4T | D4T | D4T | D4T | D4T | EFV | EFV EFV | EFV | SQV
FTC ETV
RPV
Drug usage > 1% 1987 | 1987 | 1987 | 1995.5 1987 1987 | 1987 | 1987 1987 1997 | 1997 | 2013 | 1997 | 1997 | 1996

Kihnert et al. (PLoS Pathogens, 2018) Drug age < 1% et 111 1-T-1-1-T-7T-1:[x




A pathogen’s fithess is a
composite phenotype
determined by many different
intrinsic and extrinsic factors.



Forecasting SARS-CoV-2 evolution
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Forecastlng SARS-CoV-2 evolution
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Meijers et al. use a fitness prediction model
very similar to Luskza & Lassig:

fi=h—L@)— ) xC(aa)

J <t

Fitness estimated from growth rates of
individual variants allows them to forecast
near-term changes in variant frequencies:

y(t+1)= Zx,exp(f

RN

Meijers et al., (Cell, 2023)




Forecasting SARS-CoV-2 evolution

A o

Fitting the model allows them
to estimate the time-varying
fitness of each variant as a
function of other variant’s
current and past prevalence...

Relative fitness, f;(t)[d"}]
| |

Meijers et al., (Cell, 2023)



Forecasting SARS-CoV-2 evolution
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Forecasting SARS-CoV-2 evolution

Estimating the relative fitness of competing variants in terms of both intrinsic and
antigenic fitness allows for variant frequencies to be predicted quite accurately.
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What do we need to know?

What mutations/genotypes are available?
Will the fate of new variants be determined by selection or drift?
How do genotypes map to fithess-related phenotypes?

How does fithess translate to epidemic potential at the population level?



Can we predict
pathogen evolution
more generally?



Analogy: Forecasting the weather

Despite the fact that the physical models required to predict the weather were
developed in the 19th century, it still took another hundred years for reliable
forecasts to emerge because of the need for massive amounts of atmospheric data
and computing power.

But once short-term forecasts could be made, methods could be iteratively tested
and improved, and forecasting advanced remarkably quickly.

A brief history of weather forecasting:
https://www.newyorker.com/madaazine/2019/07/01/why-weather-forecasting-keeps-
getting-better



https://www.newyorker.com/magazine/2019/07/01/why-weather-forecasting-keeps-getting-better
https://www.newyorker.com/magazine/2019/07/01/why-weather-forecasting-keeps-getting-better

The future of evolutionary predictions

We have the theory, methods and data to predict short-term evolution

Predictive genotype-to-fitness models
High-throughput phenotypic data
Genomic surveillance data

Predictive evolutionary/epidemiological models

We will likely get it wrong many times before we get it right but the fact that we can
repeatedly test predictions on short timescales means that we can iteratively and
rapidly improve our evolutionary forecasts.



In class discussion on Wednesday

Please read these two papers for class on Wednesday:

tuksza, M., & Lassig, M. (2014). A predictive fithess model for influenza. Nature,
507(7490), 57-61.

Morris, D. H., Gostic, K. M., Pompei, S., Bedford, T., Ltuksza, M., Neher, R. A, ... &
McCauley, J. W. (2018). Predictive modeling of influenza shows the promise of
applied evolutionary biology. Trends in Microbiology, 26(2), 102-118.



In class discussion on Wednesday

After you read these papers, please think about and be prepared to discuss:

1. How predictable is evolution in your favorite host-pathogen system?
What information is needed to make accurate predictions?
What is the time horizon of predictability?

What factors promote or limit predictability?

ok~ W N

What is the biggest source of uncertainty surrounding predictions?



