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Recombination is a
major force shaping
the evolution of
nearly all microbial
pathogens



The advantages of recombination

Similar to sexual reproduction,
recombination can shuffle parental
genetic material to:

e Combine beneficial mutations
e Purge deleterious mutations

® Repair defective genomes

a Creation of advantageous genotypes
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Simon-Loriere and Holmes (Nat. Rev. Micro., 2011)




Mechanisms of recombination
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Mechanisms of recombination

In eukaryotes, recombination is typically due to crossover events
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Mechanisms of recombination

In bacteria, recombination it typically due to gene conversion — the substitution of
a small fragment of DNA from one chromosome to another.
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Mechanisms of viral recombination
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Mechanisms of recombination

Segmented viruses also undergo reassortment — reshuffling of segments between
different progeny viruses
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If recombination is so
good for pathogens,
why is it so bad for
phylogenetics?



Recombination creates mosaic ancestry

Without any recombination, the entire genome
of an individual will share the same ancestry (i.e.

phylogenetic history). © @
N\ /

With recombination, genomes become mosaics

N\ /

where different segments descend from @
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different ancestors.

No single phylogenetic tree can therefore
describe the genetic ancestry of a sample of
recombining sequences.




Recombination creates mosaic ancestry

Different regions of the genome will have different phylogenetic histories:
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Effect of a single recombination event

A single recombination event between two sampled lineages will have one of three
possible effects on the phylogeny:

e No effect

e [Effect only the branch lengths

e [Effect the tree topology

Hein et al. (2004)
D



Effect of a single recombination event

If two recombinant sequences coalesce before they coalesce with any other
lineage, the recombination event will have no effect on the phylogeny.

Hein et al. (2004)
D



Effect of a single recombination event

Recombination events within individual hosts will generally have no impact on the
overall pathogen phylogeny




Effect of a single recombination event

Only branch lengths will change if one of two recombining sequences merges with
another sequence before coalescing with the other recombining sequence again.

Hein et al. (2004)



Effect of a single recombination event

The tree topology will change if the two recombining sequences coalesce with
other sequences before the two recombining sequences coalesce.

Hein et al. (2004)




Effect of a single recombination event

The tree topology will change if the two recombining sequences coalesce with
other sequences before the two recombining sequences coalesce.

Hein et al. (2004)




Effect of a single recombination event

The tree topology will change if the two recombining sequences coalesce with
other sequences before the two recombining sequences coalesce.

Hein et al. (2004)




Effect of a single recombination event

A recombination event between two sequences can generate recombinant
sequences that are quite genetically divergent from the parent sequences.
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Effect of a single recombination event

This will result in abnormally long branches leading to recombinant sequences if
recombination is ignored when reconstructing the phylogeny.
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Effect of many recombination events

In the presence of multiple recombination events, phylogenies:

e Have longer terminal branches
e Tree shape become more star-like

e Mutations accumulate in a less clock-like manner***

*** Wreaks havoc on estimating the molecular clock rate

Schierup and Hein (2000)
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Effect of many recombination events
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We therefore need to
be able to detect
and/or account for
recombination in
phylogenetic analyses



How do we detect recombination?

e Phylogenetic discordance between loci
e Linkage disequilibrium maps

e Substitution distribution/mosaic tests



Phylogenetic discordance

Phylogenetic discordance between ‘local’ trees can be used to detect
recombination but may also arise due to errors in reconstruction.
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Phylogenetic discordance

Phylogenetic discordance between ‘local’ trees can be used to detect
recombination but may also arise due to errors in reconstruction.
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How do we detect recombination?

e Phylogenetic discordance between loci
e Linkage disequilibrium maps

e Triplet sequence tests



Linkage disequilibrium

Linkage disequilibrium is the non-random association of alleles at different loci in a
given population.

LD at the population level may arise due to alleles being physically linked into
haplotypes.

LD can be quantified by looking at correlations in the presence/absence of alleles
between different sites.

LD is expected to decay over long distances in the genome due to recombination.



Linkage disequilibrium maps

Sharp changes in linkage disequilibrium -- correlations in the presence/absence of
alleles -- can indicate recombination in the history of the sample
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Linkage disequilibrium:
correlations between
sites in the presence or
absence of alleles.

Fang et al. (2009)




How do we detect recombination?

e Phylogenetic discordance between loci
e Linkage disequilibrium maps

e Substitution distribution/mosaic tests



How do we detect recombination?

Many substitution methods test for clustering/mosaicism of mutations in
configurations that are unlikely to have evolved by mutation alone.

Pairs or triplets of sequences are compared, one is assumed to be a potential child
sequence that could have arisen by the other “parent” sequences recombining.

We'll consider the 3SEQ test of Boni et al. (Genetics, 2007)



The 3SEQ triplet test

PPPPPPPPPPP

Parent p
Parent g QQ QQQQQQ Q QQ
Child ¢ PP P QPPPQQQAQ

Let the P’s be mutations that the child shares in common with parent
p and the Q’s be mutations the child shares with parent g



The 3SEQ triplet test

We can think of the mutations as up and down steps in a discrete random walk.
Let the P’s be thought of as up steps in the random walk.
And the Q’s as down steps.

A hypergeometric random walk model can be used test whether the distribution
(order) of P’s and Q’s is nonrandom based on the height of the random walk.



The 3SEQ test for Neisseria

A recombinant will have a statistically improbable heights with its up steps
clustered towards one end and down steps clustered towards the other end.
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The 3SEQ test for 1918 Spanish influenza

Small deviations from plausible random walks provide weak evidence for
recombination
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But which methods
work best for detecting
and localizing
recombination
breakpoints?



Sensitivity versus specificity

Detection power increases with genetic diversity but there is a tradeoff between
power (sensitivity) and specificity.
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Sensitivity versus specificity

Phylogenetic discordance methods have higher power but low specificity.
Substitution methods like 3SEQ have lower power but very high specificity.

Specificity = True negative rate
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Breakpoint location accuracy

3SEQ performs best in accurately locating breakpoints but is still highly dependent
on patterns of genetic polymorphisms in the sequences.
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Phylogenetic
methods that account
for recombination



Some potential options

Remove recombinant sequences from alignments.

Remove recombinant genomic regions and reconstruct
local trees from recombination-free blocks.

Assume evolution is mostly tree-like and reconstruct a
clonal frame

Reconstruct a full ancestral recombination graph
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Some potential options

Remove recombinant sequences from alignments.

Remove recombinant genomic regions and reconstruct
local trees from recombination-free blocks.

Assume evolution is mostly tree-like and reconstruct a
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Inferring local trees

Local trees can be reconstructed for each non-recombinant region between
detected breakpoints if there is sufficient genetic diversity between breakpoints..
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Recombination vs. mutation rates

Whether or not it is possible to infer local phylogenies ultimately depends of the
ratio of the recombination rate r to the mutation rate m.

If r/m << 1, most changes in the genome occur due to mutation and it will generally
be possible to infer local phylogenies within non-recombining regions.

If /m > 1, most changes occur by recombination and there will not be enough
mutations between recombination breakpoints to reliably reconstruct phylogenies.



Recombination vs. mutation rates

The ratio r/m varies widely among different microbial pathogens

Table 1 The ratio of nucleotide changes as the result of recombination relative to point mutation (+/m) for different bacteria and archaea estimated from MLST data using ClonalFrame

Species Phylum/division Ecology n STs n loci r/m 95% CI Reference
Flavobacterium psychrophilum Bacteroidetes Obligate pathogen 33 7 63.6 32.8-82.8 Nicolas et al. (2008)
Pelagibacter ubique (SAR 11) a-proteobacteria Free-living, marine 9 8 63.1 47.6-81.8 Vergin et al. (2007)
Vibrio parah Iyti -proteot i Free-living, marine (OP) 20 7 39.8 27.4-48.2 Gonzalez-Escalona et al. (2008)
Salmonella enterica y-proteobacteria Commensal (OP) 50 7 30.2 21.0-36.5  web.mpiib-berlin.mpg.de/mlst
Vibrio vulnificus y-proteobacteria Free-living, marine (OP) 41 5 26.7 19.4-33.3 Bisharat et al. (2007)
Streptococcus pneumoniae Firmicutes Commensal (OP) 52 6 23.1 16.7-29.0 Hanage et al. (2005)
Microcystis i Cyanot ia Free-living, aquatic 79 7 18.3 13.7-21.2 Tanabe et al. (2007)

1 pyoge! Firmi Commensal (OP) 50 7 17.2 6.8-24.4  Enright et al. (2001)
Helicobacter pylori &-protecbacteria Commensal (OP) 117 8 13.6 12.2-15.5  pubmlst.org
Moraxella catarrhalis y-proteobacteria Commensal (OP) 50 8 10.1 4.5-18.6 web.mpiib-berlin.mpg.de/mlst

isseri ingitidi: p-proteot ia Commensal (OP) 83 7 7.1 5.1-9.5 Jolley et al. (2005)
Plesi higelloid. y-proteot ia Free-living, aquatic 58 5 21 3.8-13.0 Salerno et al. (2007)
Neisseria lactamica f-proteobacteria C 1 180 7 6.2 4.9-74 pubmlst.net
Myxococcus xanthus 3-proteobacteria Free-living, terrestrial 57 5 5.5 1.9-11.3 Vos and Velicer (2008)
Haemophilus influenzae y-proteobacteria Commensal (OP) 50 7 3.7 2.6-5.4 Meats et al. (2003)
Wolbachia b complex a-proteobacteria Endosymbiont 16 5 3.5 1.8-6.3 Baldo et al. (2006)

pylob insul P t i Commensal (OP) 59 7 3.2 1.9-5.0 Stoddard et al. (2007)

Mycoplasma hyopneumoniae Firmicutes Commensal (OP) 33 7 3.0 1.1-5.8 Mayor et al. (2007)
Haemophilus parasuis y-proteob ia C 1(OP) 79 7 2.7 2.1-3.6 Olvera et al. (2006)
Campylobacter jejuni e-proteobacteria Commensal (OP) 110 7 2.2 1.7-2.8 pubmlst.org
Halorubrum sp. Halobacteria (Archaea) Halophile 28 4 2.1 1.2-3.3 Papke et al. (2004)
Pseud iridifl y-proteobacteria Free-living, plant pathogen 92 3 2.0 1.2-2.9 Goss e al. (2005)
Bacillus weihenstephanensis Firmicutes Free-living, terrestrial 36 6 2.0 1.3-2.8 Sorokin et al. (2006)
Pseudomonas syringae y-proteobacteria Free-living, plant pathogen 95 4 15 1.1-2.0 Sarkar and Guttman (2004)
Sulfolobus islandicus Thermoprotei (Archaea) Thermoacidophile 17 5 1.2 0.1-4.5 Whitaker et al. (2005)
Ralstonia solanacearum B-proteobacteria Plant pathogen 58 7 1.1 0.7-1.6 Castillo and Greenberg (2007)
Enterococcus faecium Firmicutes Commensal (OP) 15 7 1.1 0.3-2.5 Homan et al. (2002)
Mastigocladus lamii Cyanob: ia Thermophile 34 4 0.9 0.5-1.5 Miller et al. (2007)
Legionella | hil y-proteob ia Protozoa pathogen 30 2 0.9 0.2-1.9 Coscolla and Gonzalez-Candelas (2007)
Microcoleus chth I Cyanot ia Free-living, marine 22 2 0.8 0.2-1.9 Lodders et al. (2005)
Bacillus thuringiensis Firmicutes Insect pathogen 22 6 0.8 0.4-1.3 Sorokin et al. (2006)
Bacillus cereus Firmicutes Free-living, terrestrial (OP) 13 6 0.7 0.2-1.6 Sorokin et al. (2006)
Oenococcus oeni Firmicutes Free-living, terrestrial 17 5 0.7 0.2-1.7 de Las Rivas et al. (2004)
Escherichia coli ET-1 group y-proteob ia 1 (free-living?) 44 7 0.7 0.03-2.0 Walk et al. (2007)
Listeria monocytogenes Firmicutes Free-living, terrestrial (OP) 34 7 0.7 0.4-1.1 Salcedo et al. (2003)
Enterococcus faecalis Firmicutes Commensal (OP; 37 7 0.6 0.0-3.2 Ruiz-Garbajosa et al. (2006)
Porphyromonas gingivalis Bacteroidetes Obligate pathogen 99 7 0.4 0.0-3.4 Enersen et al. (2006)
Yersinia pseudotuberculosis y-proteobacteria Obligate pathogen 43 7 0.3 0.0-1.1 web.mpiib-berlin.mpg.de/mlst
Chlamydia h i Chl di Obligate pathogen 14 7 0.3 0.0-1.8 Pannekoek et al. (2008)
Klebsiella p y-proteot ia Free-living, terrestrial (OP) 45 7 0.3 0.0-2.1 Diancourt et al. (2005)
Bordetella pertussis p-proteobacteria Obligate pathogen 32 7 0.2 0.0-0.7 Diavatopoulos et al. (2005)
Brachyspira sp. Spirochaetes Commensal (OP) 36 7 0.2 0.1-0.4 Rasback et al. (2007)
Clostridium difficile Firmicutes Commensal (OP) 34 6 0.2 0.0-0.5 Lemee et al. (2004)
Bartonella henselae a-proteobacteria Obligate pathogen 14 7 0.1 0.0-0.7 Arvand et al. (2007)
Lactobacillus casei Firmicutes Commensal 32 7 0.1 0.0-0.5 Diancourt et al. (2007)
Staphylococcus aureus Firmicutes Commensal (OP) 53 7 0.1 0.0-0.6 Enright et al. (2000)
Rhizobium gallicum a-proteobacteria Free-living, terrestrial 33 3 0.1 0.0-0.3 Silva et al. (2005)
Leptospira interrogans Spirochaetes Commensal (OP) 61 7 0.02 0.0-0.1 Thaipadungpanit et al. (2007)

Vos & Didelot (ISME, 2008)
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Some potential options

Remove recombinant sequences from alignments.

Remove recombinant genomic regions and reconstruct
local trees from recombination-free blocks.

Assume evolution is mostly tree-like and reconstruct a
clonal frame

Reconstruct a full ancestral recombination graph

Lower
recombination
rates

Higher
recombination
rates



Clonal frames

A clonal frame attempts to describe the true ancestral relationships among
sampled individuals as a single tree.

Assumes the majority of the genome is inherited clonally (vertically) while
accounting for recombination within certain regions of the genome

Clonal frames are a popular choice for bacteria where the majority of the genome is
assumed to be inherited clonally (i.e. the core genome) but gene conversion and
other horizontal transfers overwrites small portions of the genome.



The ClonalFrameML approach

A ML phylogeny is reconstructed from a multiple genome alignment which is taken
to represent the initial clonal frame

The genomic location of insertions caused by recombination are estimated along
each branch of the tree using a Hidden Markov Model.

Recombination events are identified and initial ML phylogeny can be refined by
ignoring (masking) recombinant regions of the genome.

Didelot et al. (PLoS Comp Bio, 2015)
D



The ClonalFrame model of recombination

The ClonalFrame model of recombination does not consider recombination events
between sampled lineages in the phylogeny.
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The ClonalFrame model of recombination

Rather the model assumes recombination events overwrite short sequences by
inserting genetic material that is external to the sampled sequences.
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ClonalFrame of Staphylococcus aureus

Dark blue = recombinant regions to be masked Didelot et af. (PLoS Comp Bio, 2015)



Bacter: Clonal frames in BEAST 2
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Some potential options

Remove recombinant sequences from alignments.

Remove recombinant genomic regions and reconstruct
local trees from recombination-free blocks.

Assume evolution is mostly tree-like and reconstruct a
clonal frame

Reconstruct a full ancestral recombination graph

Lower
recombination
rates

Higher
recombination
rates



Ancestral recombination graphs

ARGs provide a complete record of the ancestry of all sequences as a
graph/network.

This graph includes all recombination and coalescent events in the history of the
sample as well as information about the location of recombination breakpoints.

The local phylogeny at each genomic position is embedded in the full ARG



A hypothetical ARG
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Ancestral recombination graphs

ARGs are in theory the ideal way to represent the full ancestral history of
sequences with recombination.

However, even state-of-the-art methods like ARGweaver (Rasmussen et al., 2014)
that employ very efficient HMM methods work with at most dozens of sequences.

Notoriously difficult to infer full ARGs, but in recent years several methods have
allowed for much faster inference by approximating ARGs as a sequence of
correlated local trees.



Faster approximate ARG methods
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Faster approximate ARG methods
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Project, Simons Genome Diversity Project and UK Biobank, showing that the inferred genealogies are rich in biological signal
and efficient to process.
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Faster approximate ARG methods
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Demographic inference from ARGs

(Structured) coalescent methods can be adapted to ARGs, allowing for
demographic inference from many different correlated but different local trees.
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Demographic inference from ARGs

Because ARGs contain many different trees, there is often way more information
about demographic parameters in ARGs than any single phylogenetic tree.

I1B: M_AR-IN 1B: M_AR-NC 1B: M_AR-TX

\ — Exponential prior

B ARG posterior

Probability

1B: M_IN-NC 1B: M_IN-TX I1B: M_NC-TX

Migration rate Migration rate Migration rate

Guo et al. (PLoS Comp Bio, 2022)




Some potential options

Remove recombinant sequences from alignments.

Remove recombinant genomic regions and reconstruct
local trees from recombination-free blocks.

Assume evolution is mostly tree-like and reconstruct a
clonal frame

Reconstruct a full ancestral recombination graph

Lower
recombination
rates

Higher
recombination
rates



On Wednesday we
will look at how to

detect recombination
using RDPA4.



