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A word on likelihoods

A likelihood is the probability of data X given some model M and its parameter
values 6

P(X|M, 6)

Likelihood based phylogenetic methods seek to find the tree that maximizes the
likelihood of the sequence data under some model of molecular evolution

P(Seq|Tree, 6)

We therefore need to compute the likelihood of sequence data given a tree



Let’s start by
assuming we have a
phylogeny with
aligned sequences at
the tips



Likelihood of sequence data on trees
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Likelihood of sequence data on trees
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If we could directly observe sequence evolution on the tree, computing the
likelihood of the sequence data would be easy. We could just compute the
probability of every mutation event and multiply those probabilities together.



Likelihood of sequence data on trees

ACTG

\\\ ACTG

AGTG

ACTG

The problem is that we observe sequences at the tips but not their evolutionary
history. Thus we have to take all possible evolutionary trajectories into account.



Likelihood of sequence data on trees
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This includes the possibility of multiple substitutions occurring at a particular

site.



Likelihood of sequence data on trees
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And convergent substitutions occurring on different branches.



Modeling molecular evolution

We normally model sequence evolution as a Markov process.

A Markov process is a type of memoryless stochastic process, i.e. a series of
random events through time where the probability of jumping to a new state
depends only the current state.

Example: the probability of a nucleotide base mutating to another base depends
only on the current state, not previous states.

There are discrete and continuous time Markov processes. We generally model
sequence evolution in continuous time.



Markovian models of sequence evolution

At a given site, the rate at which transitions between different bases occur is given

by a substitution rate matrix:
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Some common
substitution models
for DNA sequence
evolution



The Jukes-Cantor model

The Jukes-Cantor model is the most basic substitution model for nucleotide
sequences. All substitutions have the same rate A:
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Jukes and Cantor (1969)




The K80 model

The K80 model allows for two substitution rates, one for transitions (a) and one for
transversions (f3):
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The GTR model

The generalized time reversible model (GTR) allows for six different substitution
rates for each pair of nucleotides but assumes rates are symmetric.
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Likelihood of sequence data on trees

ACITG

\ AlCITG

AGITG

ACTG

So far we have rates of nucleotide substitutions, but we need to find transition
probabilities to compute the likelihood.



Modeling molecular evolution

We can compute transition probabilities under a continuous-time Markov model
given our substitution matrix Q and the time elapsed along a branch t.

P(t) = %

The elements of P(t) give us the probability of every possible transition. Importantly,
these transition probabilities take into account every possible substitution path.
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Computing likelihoods at one site
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Given the ancestral sequence of the parent, we can compute the likelihood at a

single site:
J L(Seq|Tree) = Poc(t) * Pog(t)



Computing likelihoods at one site
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If the ancestral sequences are not observed, we must integrate or sum over all

possible ancestral states:
L(Seq|Tree) = Z (Pxc(t) * Pxg(t))
Xe{ACTG}



Computing the total likelihood

Felsenstein’s pruning algorithm (J. Mol. Evol,, 1981) uses dynamic programming to
compute likelihoods on larger trees. The algorithm traverses the tree from tips to
root, combining the partial likelihoods of two subtrees at each internal node.

We generally assume sites evolve independently, so we can multiple the likelihood
of each site to compute the total likelihood of the sequence data at all sites.

i=N
L(Seq|Tree) = | | L(Seq;|Tree)

1=1




Maximum likelihood tree reconstruction

Likelihood-based tree reconstruction methods
search tree space to find the tree that maximizes .
the likelihood of the sequence data. o
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The number of potential trees grows rapidly with
the number of tips. There are (2n-3)!! rooted binary
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rather than exhaustive tree searches. 10°
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***Also need to estimate evolutionary parameters
like substitution rates

Red shows rooted binary trees.




Towards a Bayesian
worldview



Adopting a Bayesian worldview

Bayesian inference is really all about combining information in a rational way while
dealing with uncertainty

Basic model: Prior beliefs = New data = Updated beliefs

The way we combine information follows directly from basic probability theory (i.e.
Bayes theorem)



Bayesian reasoning: An example

Let’s say your doctor just diagnosed you with a very rare disease found in only one
out of every 1,000 people (0.1% prevalence)

We know that the true positive rate of the diagnostic test is 95% and the false
positive rate is 5%

What is the probability that you are actually sick?



Bayes theorem

Bayes theorem tells us how to correctly compute conditional probabilities of the
form P(AIB).

That is, what is the probability of observing outcome A given that we observed

outcome B?

Bayes theorem tells us that:

P(A|B) = %P(A)



Bayes theorem: an example

In our example, we want to compute the conditional probability P(sick | +).

Applying Bayes theorem, we see that:

P(+|sick)
Fi+)

P(sick|+) = P(sick)



Bayes theorem: an example

We already know two pieces of information needed:
We know that the prior probability P(sick) is 1in 1000 = 0.001
We know the true positive rate is: P(+ | sick) = 0.95.

Bayes theorem:

P(+|sick)

P(sick|+) = P(1)

P(sick)



Bayes theorem: an example

But how do we compute the total probability of testing positive P(+)?

We need to sum all the ways we could have been diagnosed as positive whether
healthy or sick. So the total probability of being positive is:

P(+) = P(+|sick)P(sick) + P(+|healthy)P(healthy) = 0.05

The true positive rate is 95%, so P(+ | sick) = 0.95.
The false positive rate is 5%, so P(+ | healthy) = 0.05.
P(sick) = 0.001

P(healthy) = 1 - P(sick) = 0.999.



Bayes theorem: an example

Putting everything back into Bayes theorem:

P(+]si -
CH157K) b giery = 250,001 = 0.0187

Flaek+) =—prs 0.05




Bayes theorem: an example

Putting everything back into Bayes theorem:

P(+|sick) ., . . 095
P(sick) = ~220.001 = 0.0187
P k) = o505

P(sick|+) =

Interpretation: the relative low prior probability of being sick combined with the
relatively high probability of a false positive means the actual probability of being

sick is low (>2%).



Dependence on prior beliefs

The actual probability of being sick given a positive test depends very strongly on
the background rate or prevalence P(sick).

P(sicklpositive)

1 1 1 1 1 1 1 1 1 J
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P(sick)



The problem with ignoring prior info
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But how do we
quantify our prior
beliefs?



Bayesian priors

In Bayesian inference, we summarize our prior beliefs using a prior distribution

The prior is a probability distribution over all possible values of an unknown
(random) variable.
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Bayesian inference

Our prior beliefs get updated when we observe new information or data using
Bayes theorem:

L(data|0)
p(data)

p(6|data) = p(0)



Bayesian inference

Our prior beliefs get updated when we observe new information or data using
Bayes theorem:

Likelihood

Posterior distribution l

\ L(data|0)

p(f|data) =

p(0)

p(data) \
T

Normalization
constant

Prior distribution




Bayesian inference: another example

Inferring the mean value of a normally distributed population given a limited sample
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The true mean p = 4, so observing some data shifts the prior distribution away from
zero towards the 4.



Bayesian inference: another example

The relative contribution of the prior to the posterior decreases with more data
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Computing the posterior

We can generally compute the unnormalized posterior probability of a given
parameter value:

p(0 = x|data) x L(datald = x)p(6 = x)

However, it is generally very difficult to compute the normalization constant:

p(data) = /L(data|0)p(9)d0

0




Computing the posterior

If we cannot analytically compute the posterior, we can sample values from the
posterior distribution and then use these samples to construct an approximation to
the posterior distribution.

in Bayesian inference, Markov chain Monte Carlo (MCMC) is the most commonly
used method to sample from a desired distribution.



What is a Markov chain?

A Markov chain is a Markov process that randomly jumps between different states
over time. The state of the process at time t depends only on the previous state at
timet .

MCMC is an example of discrete-time process. i ﬂ' ,m
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The Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is one commonly used variant of MCMC:

At each MCMC iteration m with state x(m) = 6:
1. Propose 6* from a proposal density ¢(6%|6).

2. Compute the acceptance probability a: Hastings term

L(datal0*)p(6*) q(0|0*)
L(data|@)p(0) q(6*]0)

o =

3. If a > 1: accept 6*
Else: accept 8* with probability «

Ratio of posterior

4. If accepting 0*: set x(m + 1) =6 orobabilities

Else set x(m + 1) = 6.



The Metropolis-Hastings algorithm

The main idea behind the MH algorithm is that we accept parameters with a
probability proportional to their posterior probability.

This means that the amount of time the chain spends in state x will be proportional
to the posterior probability of x.

However, for this to be true, the chain needs to have reached its stationary phase
or distribution (i.e. equilibrium).



MCMC: Convergence

Samples from a MCMC are only valid once the chain has converged on its
stationary distribution

Burn-in

Stationary phase
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MCMC: Mixing

Mixing refers to how efficiently the chain explores the posterior distribution. Since
we want pseudo-independent samples from the posterior, we want good mixing =
low autocorrelation between successive samples.
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MCMC: The blind robot analogy

Achieving good mixing requires a good proposal distribution.
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MCMC: Checking convergence

Because of issues with mixing and convergence, it is always a good idea to run
multiple chains starting from different initial values.
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MCMC in higher dimensions

MCMC is often used to infer the joint posterior distribution of two or more
variables e.qg. p(X,Y12)

For many high-dimensional problems, MCMC is the only practical approach to
Bayesian inference.



MCMC: 2D example

Let’s use the MH algorithm to estimate both the mean and variance of a normal
distribution:
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MCMC: 2D example

In 2D, the amount of time the chain spends at a particular combination of
parameters is proportional to their joint posterior probability.

Joint probability here means probability of a i value and a o2 value together



Joint vs. marginal distributions

The joint posterior is the probability distribution over all unknown variables or
parameters.

The marginal posterior is the probability distribution over a given parameter
integrated (i.e. averaged) over all possible values of the other parameters.

Computing the marginal distribution allows us to take into account uncertainty in
other estimated parameters.




Summary of Bayesian inference

Bayes theorem tells us how to compute conditional probabilities of the form P(AIB)
given we have information about P(A). P(A) represents our prior beliefs about A.

Bayes theorem lets us compute the posterior distribution of a variable by
combining prior information with new information coming from the data through the
likelihood function.

Both the posterior and the prior are probability distributions over an unobserved
(random) variable.

For many problems, we cannot directly compute the posterior but we can
approximate it using MCMC.



