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A word on likelihoods
A likelihood is the probability of data X given some model M and its parameter 
values θ

Likelihood based phylogenetic methods seek to find the tree that maximizes the 
likelihood of the sequence data under some model of molecular evolution

We therefore need to compute the likelihood of sequence data given a tree

 



Let’s start by 
assuming we have a 
phylogeny with 
aligned sequences at 
the tips 



Likelihood of sequence data on trees
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If we could directly observe sequence evolution on the tree, computing the 
likelihood of the sequence data would be easy. We could just compute the 
probability of every mutation event and multiply those probabilities together.



Likelihood of sequence data on trees
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The problem is that we observe sequences at the tips but not their evolutionary 
history. Thus we have to take all possible evolutionary trajectories into account.



Likelihood of sequence data on trees
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This includes the possibility of multiple substitutions occurring at a particular 
site. 

T > G G > T



Likelihood of sequence data on trees
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And convergent substitutions occurring on different branches. 

C > G

C > G



Modeling molecular evolution
We normally model sequence evolution as a Markov process.

A Markov process is a type of memoryless stochastic process, i.e. a series of 
random events through time where the probability of jumping to a new state 
depends only the current state.

Example: the probability of a nucleotide base mutating to another base depends 
only on the current state, not previous states. 

There are discrete and continuous time Markov processes. We generally model 
sequence evolution in continuous time. 



Markovian models of sequence evolution
At a given site, the rate at which transitions between different bases occur is given 
by a substitution rate matrix: 



Some common 
substitution models 
for DNA sequence 
evolution 



The Jukes-Cantor model
The Jukes-Cantor model is the most basic substitution model for nucleotide 
sequences. All substitutions have the same rate λ: 

Jukes and Cantor (1969)



The K80 model
The K80 model allows for two substitution rates, one for transitions (α) and one for 
transversions (β): 

Kimura (1980)



The GTR model
The generalized time reversible model (GTR) allows for six different substitution 
rates for each pair of nucleotides but assumes rates are symmetric. 

Yang (1994); Zharkikh (1994)



Likelihood of sequence data on trees
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So far we have rates of nucleotide substitutions, but we need to find transition 
probabilities to compute the likelihood.



Modeling molecular evolution
We can compute transition probabilities under a continuous-time Markov model 
given our substitution matrix Q and the time elapsed along a branch t.

The elements of P(t) give us the probability of every possible transition. Importantly, 
these transition probabilities take into account every possible substitution path.



Computing likelihoods at one site
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Given the ancestral sequence of the parent, we can compute the likelihood at a 
single site:

t



Computing likelihoods at one site
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If the ancestral sequences are not observed, we must integrate or sum over all 
possible ancestral states:

t



Computing the total likelihood
Felsenstein’s pruning algorithm (J. Mol. Evol., 1981) uses dynamic programming to 
compute likelihoods on larger trees. The algorithm traverses the tree from tips to 
root, combining the partial likelihoods of two subtrees at each internal node.

We generally assume sites evolve independently, so we can multiple the likelihood 
of each site to compute the total likelihood of the sequence data at all sites.



Maximum likelihood tree reconstruction
Likelihood-based tree reconstruction methods 
search tree space to find the tree that maximizes 
the likelihood of the sequence data.

The number of potential trees grows rapidly with 
the number of tips. There are (2n-3)!! rooted binary 
trees for n tips.

Most ML methods like RAxML employ a heuristic 
rather than exhaustive tree searches.

***Also need to estimate evolutionary parameters 
like substitution rates

 

Red shows rooted binary trees.



Towards a Bayesian 
worldview 



Adopting a Bayesian worldview
Bayesian inference is really all about combining information in a rational way while 
dealing with uncertainty

Basic model: Prior beliefs → New data → Updated beliefs

The way we combine information follows directly from basic probability theory (i.e. 
Bayes theorem) 



Bayesian reasoning: An example
Let’s say your doctor just diagnosed you with a very rare disease found in only one 
out of every 1,000 people (0.1% prevalence)

We know that the true positive rate of the diagnostic test is 95% and the false 
positive rate is 5%

What is the probability that you are actually sick?



Bayes theorem
Bayes theorem tells us how to correctly compute conditional probabilities of the 
form P(A|B).

That is, what is the probability of observing outcome A given that we observed 
outcome B?

Bayes theorem tells us that:



Bayes theorem: an example
In our example, we want to compute the conditional probability P(sick | +).

Applying Bayes theorem, we see that:



Bayes theorem: an example
We already know two pieces of information needed:

We know that the prior probability P(sick) is 1 in 1000 = 0.001

We know the true positive rate is: P(+ | sick) = 0.95. 

Bayes theorem:



Bayes theorem: an example
But how do we compute the total probability of testing positive P(+)?

We need to sum all the ways we could have been diagnosed as positive whether 
healthy or sick. So the total probability of being positive is:

The true positive rate is 95%, so P(+ | sick) = 0.95. 

The false positive rate is 5%, so P(+ | healthy) = 0.05. 

P(sick) = 0.001

P(healthy) = 1 - P(sick) = 0.999.

 



Bayes theorem: an example
Putting everything back into Bayes theorem:



Bayes theorem: an example
Putting everything back into Bayes theorem:

Interpretation: the relative low prior probability of being sick combined with the 
relatively high probability of a false positive means the actual probability of being 
sick is low (>2%).



Dependence on prior beliefs
The actual probability of being sick given a positive test depends very strongly on 
the background rate or prevalence P(sick).



The problem with ignoring prior info

https://xkcd.com/1132/



But how do we 
quantify our prior 
beliefs? 



Bayesian priors
In Bayesian inference, we summarize our prior beliefs using a prior distribution

The prior is a probability distribution over all possible values of an unknown 
(random) variable. 



Bayesian inference
Our prior beliefs get updated when we observe new information or data using 
Bayes theorem: 



Bayesian inference
Our prior beliefs get updated when we observe new information or data using 
Bayes theorem: 

Posterior distribution

Likelihood

Prior distribution

Normalization 
constant



Bayesian inference: another example
Inferring the mean value of a normally distributed population given a limited sample

The true mean μ = 4, so observing some data shifts the prior distribution away from 
zero towards the 4.



Bayesian inference: another example
The relative contribution of the prior to the posterior decreases with more data



Computing the posterior
We can generally compute the unnormalized posterior probability of a given 
parameter value:

However, it is generally very difficult to compute the normalization constant: 



Computing the posterior
If we cannot analytically compute the posterior, we can sample values from the 
posterior distribution and then use these samples to construct an approximation to 
the posterior distribution.

in Bayesian inference, Markov chain Monte Carlo (MCMC) is the most commonly 
used method to sample from a desired distribution.



What is a Markov chain?
A Markov chain is a Markov process that randomly jumps between different states 
over time. The state of the process at time tn depends only on the previous state at 
time tn-1.

MCMC is an example of discrete-time process.

Example: a one dimensional random walk



The Metropolis-Hastings algorithm
The Metropolis-Hastings (MH) algorithm is one commonly used variant of MCMC:

Ratio of posterior 
probabilities

Hastings term



The Metropolis-Hastings algorithm
The main idea behind the MH algorithm is that we accept parameters with a 
probability proportional to their posterior probability.

This means that the amount of time the chain spends in state x will be proportional 
to the posterior probability of x.

However, for this to be true, the chain needs to have reached its stationary phase 
or distribution (i.e. equilibrium).



MCMC: Convergence
Samples from a MCMC are only valid once the chain has converged on its 
stationary distribution

Burn-in Stationary phase



MCMC: Mixing
Mixing refers to how efficiently the chain explores the posterior distribution. Since 
we want pseudo-independent samples from the posterior, we want good mixing = 
low autocorrelation between successive samples.



MCMC: The blind robot analogy
Achieving good mixing requires a good proposal distribution.



MCMC: Checking convergence
Because of issues with mixing and convergence, it is always a good idea to run 
multiple chains starting from different initial values.



MCMC in higher dimensions
MCMC is often used to infer the joint posterior distribution of two or more 
variables e.g. p(X,Y|Z)

For many high-dimensional problems, MCMC is the only practical approach to 
Bayesian inference.



MCMC: 2D example
Let’s use the MH algorithm to estimate both the mean and variance of a normal 
distribution:



MCMC: 2D example
In 2D, the amount of time the chain spends at a particular combination of 
parameters is proportional to their joint posterior probability.  

Joint probability here means probability of a μ value and a σ2 value together 



Joint vs. marginal distributions
The joint posterior is the probability distribution over all unknown variables or 
parameters.

The marginal posterior is the probability distribution over a given parameter 
integrated (i.e. averaged) over all possible values of the other parameters.

Computing the marginal distribution allows us to take into account uncertainty in 
other estimated parameters.



Summary of Bayesian inference
Bayes theorem tells us how to compute conditional probabilities of the form P(A|B) 
given we have information about P(A). P(A) represents our prior beliefs about A.

Bayes theorem lets us compute the posterior distribution of a variable by 
combining prior information with new information coming from the data through the 
likelihood function.

Both the posterior and the prior are probability distributions over an unobserved 
(random) variable.

For many problems, we cannot directly compute the posterior but we can 
approximate it using MCMC.


