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The road ahead

Last week: Modeling epidemic dynamics with SIR models

This week: Stochastic models for simulation and inference

Next week: putting everything together with phylodynamic modeling



Why include 
stochasticity in our 
models?



Why include stochasticity?

● To account for true randomness in a process (e.g. rolling dice)

● To account for uncertainty/heterogeneity in a process

● To capture realistic amounts of variability in observed data



Accounting for true randomness

Some processes might be truly random or 
stochastic (e.g. electrons in quantum theory), but 
this is scientifically and philosophically debatable.

Rather, it is often convenient to model a physical 
process as random.

Example: we model the outcome of rolling dice as a 
random variable because the physics required to 
model this deterministically is very complicated and 
would require us to know a lot of information.

“I, in any case, am 
convinced He [God] 
does not play dice 
with the universe.” 

Einstein (1926)



Accounting for uncertainty

We often model processes at much smaller and larger scales than we are 
interested in using phenomenological models.

Example: The transmission rate of a foliar pathogen from one plant to another could 
be modeled mechanistically if we knew a lot about the number of spores on each 
leaf, spore viability, relative humidity, wind speeds, ect.

We generally don’t have access to this detailed information so we take into account 
our uncertainty about individual outcomes using stochastic models.  



Accounting for uncertainty

We often model processes at much smaller and larger scales than we are 
interested in using phenomenological models.

Example: The transmission rate of a foliar pathogen from one plant to another could 
be modeled mechanistically if we knew a lot about the number of spores on each 
leaf, spore viability, relative humidity, wind speeds, ect.

We generally don’t have access to this detailed information so we take into account 
our uncertainty about individual outcomes using stochastic models.

In this sense, stochasticity is a hedge against our own ignorance.  



Capturing variability in data

Empirical data often include much more heterogeneity and variability than our 
simple deterministic models would suggest.

When performing statistical inference, including stochasticity in our models allows 
us to fit models that are flexible enough to account for this variability.

When making predictions/forecasting, simulating data often requires us to add 
randomness in order to generate an ensemble of different possible outcomes. 



Why include stochasticity?

● To account for true randomness in a process (e.g. rolling dice)

● To account for uncertainty/heterogeneity in a process

● To capture realistic amounts of variability in observed data



How do we include 
stochasticity in our 
models?



Different types of stochasticity

Observational noise: error in our observations that don’t actually affect the process 
under study (e.g. misreporting of infections).

Example: Normally distributed noise or errors in linear regression:
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Different types of stochasticity

Observational noise: error in our observations that don’t actually affect the process 
under study (e.g. misreporting of infections).

Process noise: randomness in a process that changes the dynamic behavior of the 
system under study.

Environmental noise: internal or external perturbations (e.g. climatic factors like 
relative humidity affecting transmission rates).

Demographic stochasticity: randomness in the timing and outcome of 
individual events at the individual level (e.g. the time at which a given individual 
is born and dies).



Modeling environmental noise

Environmental stochasticity is normally modeled as random noise due to external 
factors entering our model:

For dynamical systems like SIR models, we can add noise to the rates of change 
using stochastic differential equations:

𝝃 is a “noise” increment, generally a random Normal variate.



Modeling demographic stochasticity

Demographic stochasticity requires us to consider randomness in the timing and 
outcome of individual events.

Individuals are treated as discrete (whole) units, so that the number of individuals is 
always an integer.

We can think about individual events as resulting from reactions involving one or 
more individuals.



Modeling demographic stochasticity

For a stochastic SIR model, we have transmission events resulting from the 
interaction of susceptible and infected hosts:

Recovery events convert infecteds into recovered hosts:



Event driven simulation

If we want to simulate with demographic stochasticity for a population with many 
individuals and competing events/reactions, we can use the following general 
approach:

1. Simulate or draw the time of the next event.

2. Choose type of event that occurs at that time

3. Update the time and the population states to reflect any changes in the 
number of individuals of each type.  



Step 1: Finding the next event time

To draw the time of the next event we:

a) First compute the rate of each reaction or event type:

b) Sum the individual rates to find the total rate:

c) Draw the time to the next event from an exponential distribution:



Step 2: Choose the event type

In order to choose what type of event occurs we: 

a) Find the relative probability of each event type:

b) Choose the event type according to the relative probability of each event (i.e. a 
single draw from a multinomial distribution).



Step 3: Update time and states

Update the system by moving ahead to the next event time and updating the 
appropriate population states.

For example, if the next event is a transmission event we set:



Event driven simulation

If we want to simulate with demographic stochasticity for a population with many 
individuals and competing events/reactions, we can use the following general 
approach:

1. Simulate or draw the time of the next event.

2. Choose type of event that occurs at that time

3. Update the time and the population states to reflect any changes in the 
number of individuals of each type.

This process is repeatedly iterated until some end condition is met.  



The general SSA

The general stochastic simulation algorithm (SSA) can be used to simulate any 
continuous time, discrete state Markov process. It is sometimes referred to as the 
Gillespie algorithm (Gillespie, 1977).

1.) Label all events E1, E2, … EN

2.) Compute the rate λi of each event type i
3.) Compute the total rate λTotal  by summing the individual rates.
4.) Draw the next event time from an exponential distribution with rate λTotal 
5.) Choose event type E according to the relative event probabilities
6.) Update time and states



The stochastic 
simulation algorithm 
can be used to 
simulate just about 
everything!



Applications of the SSA

We can apply the SSA to simulate: 

● Epidemic dynamics with stochasticity

● Phylogenetic and transmission trees

● Molecular evolution for sequence data
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Stochastic epidemic dynamics

Stochasticity is especially important when populations are small and individual 
events have a large effect on the overall dynamics.



Applications of the SSA

We can apply the SSA to simulate: 

● Epidemic dynamics with stochasticity

● Phylogenetic and transmission trees

● Molecular evolution for sequence data



Simulating transmission trees

We can simulate the transmission tree while simulating epidemic dynamics under 
the SSA by recording the ancestry of the population in terms of parent child 
relationships:

Bob

Jane

Joe
Bob ⇾ Jane

Jane ⇾ Joe



Simulating transmission trees

We can then trace the ancestry of sampled individuals backwards through time to 
obtain the transmission tree:

Bob

Jane

Joe
Bob ⇾ Jane

Jane ⇾ Joe



Simulating trees and epidemics

MASTER is a BEAST 2 package 
that allows for efficient 
stochastic simulation of 
population dynamics and trees.

Vaughan and Drummond (MBE, 2013)
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Simulating trees and epidemics

MASTER is a BEAST 2 package 
that allows for efficient 
stochastic simulation of 
population dynamics and trees.

Events are specified as 
“reactions” in an input XML file.

Epidemic dynamics and trees 
are saved as output.

Vaughan and Drummond (MBE, 2013)



Packages for simulating trees

Popular choices include:

● MASTER  https://tgvaughan.github.io/MASTER/
○ Forward-time stochastic simulations of epidemics and trees in BEAST 2
○ Very flexible model specification (e.g. easy to add different types of hosts) 

● msprime https://tskit.dev/msprime
○ Backwards-time coalescent simulator
○ Allows for different (deterministic) demographic histories
○ Great for simulating ARGs and sequences with recombination

● SLiM https://messerlab.org/slim/
○ Forward-time simulator of trees and sequence data
○ Designed for Wright-Fisher simulations but very extensible to more complex models.
○ Great for simulating non-neutral models with selection. Fun GUI!

https://tgvaughan.github.io/MASTER/
https://tskit.dev/msprime
https://messerlab.org/slim/


Applications of the SSA

We can apply the SSA to simulate: 

● Epidemic dynamics with stochasticity

● Phylogenetic and transmission trees

● Molecular evolution for sequence data



Simulating sequences on trees

We can use the SSA to simulate molecular evolution along each lineage in a 
phylogeny to obtain simulated sequence data at the tips:

G

C

A



Simulating sequences on trees

Step 1: Compute the rate at which all substitution events occur to find the total 
mutation rate and then draw time to first mutation:

t t +Δt
A



Simulating sequences on trees

Step 2: Choose the type of substitution event the occurs at the next event time:

t t +Δt
A



Simulating sequences on trees

Step 3: Update the time and the state of the lineage to reflect the mutation event:

t t +Δt
A

A ⇾ G



Simulating sequences on trees

We can repeat this process for all lineages and all sites in order to generate mock 
sequence data at the tips:

GCA

CCA

ACT



Packages for simulating sequence data

Popular choices include:

● Seq-Gen https://github.com/rambaut/Seq-Gen

● Seq-Gen implementation in BEAST2 

https://www.beast2.org/2014/04/28/simulation-studies-with-beast-2.html

● Pyvolve (Spielman & Wilke, 2015) in Python

● Note: For more complicated simulations both msprime and SLiM allow for 
sequences to be simulated along with trees.

https://github.com/rambaut/Seq-Gen
https://www.beast2.org/2014/04/28/simulation-studies-with-beast-2.html


Why perform 
simulation studies?
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Program errors: Scientific software often contains bugs since it is generally not 
written or extensively tested by professional software engineers.

User error: It’s easy to make simple mistakes as an end-user, especially because a 
lot of software is both complicated and poorly documented

Statistical validity: Inferential methods often make many assumptions that may not 
be appropriate for your study system or data.



Simulation as sanity check

Can we get back out what we put in?

Simulate data 
under known 
parameters

Estimate 
parameters from 
simulated data 

using 
model/method

Do parameter 
estimates match 
the “true” values 
used to simulate?



Why do simulation studies?

Program errors: Scientific software often contains bugs since it is generally not 
written or extensively tested by professional software engineers.

User error: It’s easy to make simple mistakes as an end-user, especially because a 
lot of software is both complicated and poorly documented

Statistical validity: Inferential methods often make many assumptions that may not 
be appropriate for your study system or data.

Study design: Can we learn what we want to know from realistic amounts of 
simulated data?



Performing simple 
simulation studies 
identifies preventable 
errors and makes the 
computational parts 
of science much more 
reproducible.


